analysis_predictor.cc 86.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
30
#include "paddle/fluid/framework/generator.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
36
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/framework/var_type_traits.h"
38
#include "paddle/fluid/framework/version.h"
39
#include "paddle/fluid/inference/analysis/helper.h"
40
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
41
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
42
#include "paddle/fluid/inference/api/helper.h"
43
#include "paddle/fluid/inference/api/infer_context.h"
44
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
45
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
46
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
47
#include "paddle/fluid/inference/api/resource_manager.h"
48
#include "paddle/fluid/inference/utils/io_utils.h"
49
#include "paddle/fluid/inference/utils/model_utils.h"
50
#include "paddle/fluid/inference/utils/singleton.h"
51
#include "paddle/fluid/memory/memcpy.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
53
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
54
#include "paddle/fluid/platform/device_context.h"
55
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
56
#include "paddle/fluid/platform/profiler.h"
57
#include "paddle/phi/api/ext/op_meta_info.h"
58 59
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
60
#include "paddle/phi/common/place.h"
W
Wilber 已提交
61
#include "paddle/phi/core/enforce.h"
62 63
#include "paddle/utils/string/split.h"

64
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
65 66 67 68
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
69

70 71 72 73
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

74 75 76 77
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

78 79 80 81
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

Y
Yan Chunwei 已提交
82 83
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
84
#include "paddle/fluid/inference/tensorrt/helper.h"
85
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
86 87
#endif

88 89 90 91
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

92 93
namespace paddle {

N
nhzlx 已提交
94
using inference::Singleton;
N
nhzlx 已提交
95
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
96 97
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
98
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
99
#endif
100

101 102
int AnalysisPredictor::clone_num_ = 1;

103 104 105 106
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
107 108
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
109 110 111 112
    return true;
  }
  return false;
}
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

phi::Backend ConvertBackend(AnalysisConfig::Backend backend) {
  switch (backend) {
    case AnalysisConfig::Backend::kGPU:
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
    case AnalysisConfig::Backend::kNPU:
      return phi::Backend::NPU;
    case AnalysisConfig::Backend::kXPU:
      return phi::Backend::XPU;
    case AnalysisConfig::Backend::kCPU:
      return phi::Backend::CPU;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
150 151
}  // namespace

C
ccrrong 已提交
152 153
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
                             framework::LoDTensor *t,
154
                             const platform::Place &place) {
155
  framework::DDim ddim = phi::make_ddim(pt.shape);
156 157 158 159 160 161 162
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
163 164
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
C
ccrrong 已提交
181 182
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
183 184
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
185 186
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
187 188 189 190
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
191
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
192 193
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
194 195
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
196
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
197
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
198
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
199
    auto dst_gpu_place = place;
C
ccrrong 已提交
200 201 202 203 204
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
205 206 207 208 209
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
210 211
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
212
    auto dst_xpu_place = place;
C
ccrrong 已提交
213 214 215 216 217
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
218 219 220 221 222 223 224
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
225 226 227 228 229 230 231 232 233 234
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
235
bool AnalysisPredictor::Init(
236 237
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
238
  VLOG(3) << "Predictor::init()";
239 240
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
241 242
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
243
    platform::EnableProfiler(tracking_device);
244
  } else {
245 246
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
247 248
  }

249
  // no matter with or without MKLDNN
L
luotao1 已提交
250
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
251

252 253 254
  if (!PrepareScope(parent_scope)) {
    return false;
  }
255 256 257

  InitPlace();

258 259 260 261 262 263 264
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

265 266 267
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

268 269 270
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
271
  }
272

273 274 275 276 277 278 279 280 281 282 283 284 285
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
286
        static_cast<phi::GPUContext *>(
287 288 289 290 291 292
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
293
  }
294
#endif
295 296
  return true;
}
297

298
void AnalysisPredictor::InitPlace() {
299
  if (config_.use_gpu()) {
C
ccrrong 已提交
300 301
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
302 303
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
304
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
305
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
306
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
307 308
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
309 310
    }
#endif
311
  } else if (config_.use_xpu()) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
335 336 337 338 339 340 341 342
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
359 360 361 362 363 364 365
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
366 367 368 369 370 371 372 373 374
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
375
#endif
376 377 378
  } else {
    place_ = paddle::platform::CPUPlace();
  }
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
396
          auto *gpu_context = new InferGPUContext(place_);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
          gpu_context->SetGenerator(
              framework::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get());

          gpu_context->SetStream(gpu_resource->GetStream());
418
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
419
          gpu_context->SetBlasTensorCoreHandle(
420 421 422 423 424 425 426 427
              gpu_resource->GetBlasTensorCoreHandleCreator());
          gpu_context->SetBlasTF32Handle(
              gpu_resource->GetBlasTF32TensorCoreHandleCreator());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
          gpu_context->SetSolverHandle(
              gpu_resource->GetSolverDnHandleCreator());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator());
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  } else {
    return nullptr;
  }
  return nullptr;
#else
  // TODO(inference): Support other backends.
  return nullptr;
#endif
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
    paddle::framework::InitDevices();
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
522 523
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
524 525 526 527 528 529 530 531 532 533 534 535 536
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
  }

  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}

bool AnalysisPredictor::CreateExecutor() {
537 538 539
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
559 560
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
561 562 563 564 565 566 567 568 569
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
570 571
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
572 573
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
574 575 576
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
577 578 579
  }
}

580
bool AnalysisPredictor::PrepareExecutor() {
581
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
582 583 584 585 586
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
587 588
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
589 590
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
591

592 593 594
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
595

596 597 598
  return true;
}

599
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
636 637 638 639 640 641 642
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
679 680 681 682 683 684
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
685 686 687 688 689 690 691 692 693 694 695
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
696 697 698 699 700
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
757 758
      static_cast<bool>(fin.is_open()),
      true,
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

831 832
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
833 834 835 836 837 838 839 840 841 842 843 844
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
845
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
846 847 848
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
849 850 851
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
852 853
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
854 855 856
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
857 858 859
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
860
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
861
  }
862 863 864
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

865 866 867 868 869 870
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
871 872 873 874
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
875 876 877 878 879 880 881 882
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
883 884 885
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
886 887 888 889
  }
#endif
}

890 891 892
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
893
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
894 895 896
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
897
  VLOG(3) << "Predictor::predict";
898 899 900 901
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
902 903 904
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
905 906
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
907
    return false;
908
  }
M
Michal Gallus 已提交
909

910 911 912
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
913

914 915 916 917
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
918
  }
Y
Yan Chunwei 已提交
919

M
minqiyang 已提交
920
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
921

Y
Yan Chunwei 已提交
922 923 924 925 926
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
927 928 929
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
930
  tensor_array_batch_cleaner_.ResetNoTensorVars();
931 932 933 934

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
935 936
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
937
#endif
938
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
939 940 941 942
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
943
#endif
944 945
  return true;
}
946

947 948
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
949
  VLOG(3) << "Predictor::set_feed";
950 951 952 953 954 955 956 957 958 959
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
960 961
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
962 963 964
      return false;
    }
    int idx = -1;
965
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
966 967
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
968 969
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
970 971
      }
      idx = feed_names_[name];
972
    } else {
R
Ruibiao Chen 已提交
973
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
974
    }
975
    framework::SetFeedVariable(scope, *input, "feed", idx);
976 977 978 979 980 981 982 983
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
984
  auto shape = phi::vectorize(fetch.dims());
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1002
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1003 1004
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1005
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1006
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1007 1008
        static_cast<size_t>(idx),
        i,
1009
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1010 1011
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1012
            i));
1013
    framework::FetchType &fetch_var =
1014
        framework::GetFetchVariable(*scope, "fetch", idx);
R
Ruibiao Chen 已提交
1015
    auto &fetch = PADDLE_GET(framework::LoDTensor, fetch_var);
1016
    auto type = framework::TransToProtoVarType(fetch.dtype());
1017
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1018
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1019
    if (type == framework::proto::VarType::FP32) {
1020 1021
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1022
    } else if (type == framework::proto::VarType::INT64) {
1023 1024
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1025 1026 1027
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1028 1029 1030
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1031
    } else {
1032 1033
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1034 1035
    }
  }
Y
Yan Chunwei 已提交
1036 1037
  return true;
}
1038

1039
void AnalysisPredictor::PrepareArgument() {
1040
  argument_.SetUseGPU(config_.use_gpu());
1041
  argument_.SetUseFcPadding(config_.use_fc_padding());
1042
  argument_.SetGPUDeviceId(config_.gpu_device_id());
1043
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
1044 1045 1046 1047 1048 1049 1050 1051
  if (model_precision_ == phi::DataType::FLOAT32) {
    argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
  } else {
    // TODO(inference): mixed precision temporarily not support memory_optim
    LOG_FIRST_N(WARNING, 1) << "mixed precision model temporarily not support "
                               "memory optim, so we just turn off that.";
    argument_.SetEnableMemoryOptim(false);
  }
T
Tao Luo 已提交
1052
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1053
  // Analyze inference_program
1054
  argument_.SetPredictorID(predictor_id_);
1055
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
1056 1057
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1058
  } else {
C
ccrrong 已提交
1059 1060
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1061 1062
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1063
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
1064

1065 1066
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1067
  }
1068

1069
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
1070
  argument_.SetTensorRtUseOSS(config_.trt_use_varseqlen_);
1071
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
1072 1073
  argument_.SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_.SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
1074 1075 1076 1077 1078
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
1079
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1080
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1081 1082 1083
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
1084
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
1085
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
1086 1087
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
1088
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
1089
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
1090
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
1091 1092 1093
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
1094
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
W
Wojciech Uss 已提交
1095
  }
1096

D
denglin-github 已提交
1097 1098 1099 1100 1101 1102
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

石晓伟 已提交
1103
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
1104 1105
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
1106 1107 1108
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
1109 1110 1111
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
1112 1113 1114 1115 1116
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
1117
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1138 1139 1140
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1141
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
1142 1143
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
1144
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
1145 1146
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
1147 1148 1149 1150 1151 1152
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
#endif
J
jianghaicheng 已提交
1153

1154 1155 1156
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

1157
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1158
    LOG(INFO) << "MKLDNN is enabled";
1159 1160 1161
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

1162 1163 1164 1165 1166 1167 1168 1169
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1170 1171 1172 1173
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
B
baoachun 已提交
1174 1175 1176 1177 1178 1179 1180

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
    argument_.SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_.SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_.SetQuantVarScales({});
  }
1181 1182
#endif

1183
  auto passes = config_.pass_builder()->AllPasses();
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
              << ", we will use a new PassStrategy. Note that only the GPU "
                 "backend is supported for now.";
    passes.clear();
    if (config_.tensorrt_engine_enabled()) {
      for (const auto &pass : kTrtLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    } else if (config_.use_gpu()) {
      for (const auto &pass : kGpuLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    }

    const auto &deleted_passes = config_.pass_builder()->GetAllDeletedPasses();
    for (const auto &it : deleted_passes) {
      auto iterator = std::find(passes.begin(), passes.end(), it);
      if (iterator != passes.end()) {
        passes.erase(iterator);
      }
    }

    if (config_.ir_debug_) {
      auto it = std::begin(passes);
      while (it != std::end(passes)) {
        if (*it != "graph_viz_pass") {
          it = passes.insert(it + 1, "graph_viz_pass");
        } else {
          ++it;
        }
      }
    }
  }
Y
Yan Chunwei 已提交
1218 1219 1220 1221
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
1222
  argument_.SetDisableLogs(config_.glog_info_disabled());
1223
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
1224
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
1225
  argument_.SetScopeNotOwned(scope_.get());
1226

1227
  // mixed precison.
1228
  argument_.SetModelPrecision(static_cast<int>(model_precision_));
1229
  argument_.SetMixedBlackList(config_.mixed_black_list_);
1230 1231 1232 1233 1234
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1235 1236
  Analyzer().Run(&argument_);

1237
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1238 1239
      argument_.scope_valid(),
      true,
1240
      platform::errors::InvalidArgument("The argument scope should be valid."));
1241 1242
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
1243
  inference_program_.reset(
1244 1245 1246 1247 1248
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
#if PADDLE_WITH_TENSORRT
W
Wilber 已提交
1249 1250 1251 1252
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1253
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1254
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1255
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1267 1268 1269
#endif
        delete prog;
      });
1270 1271 1272 1273
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1274
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1275
}
1276 1277

template <>
1278 1279 1280
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1281 1282
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1283 1284 1285 1286
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1287
  VLOG(3) << "create AnalysisConfig";
1288
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1289 1290
      config.is_valid(),
      true,
1291 1292
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1293

1294 1295 1296 1297
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1298
                 []() { inference::RegisterAllCustomOperator(); });
1299

1300
  if (config.use_gpu()) {
1301 1302 1303 1304 1305 1306
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1307 1308
          config.memory_pool_init_size_mb(),
          0.f,
1309 1310 1311
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1312 1313
          config.gpu_device_id(),
          0,
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1327

1328 1329 1330 1331 1332 1333 1334
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
      }

1335 1336 1337 1338 1339 1340 1341 1342 1343
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1359 1360 1361 1362 1363 1364
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1365 1366 1367 1368
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1369 1370
  // Each config can only be used for one predictor.
  config.SetInValid();
1371 1372
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1373 1374 1375 1376
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1377 1378 1379 1380 1381
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1382 1383
    return nullptr;
  }
1384

G
Gabor Buella 已提交
1385
  return predictor;
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1400
void AnalysisPredictor::PrepareFeedFetch() {
1401 1402 1403
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1404
  CreateFeedFetchVar(sub_scope_);
1405 1406
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
R
Ruibiao Chen 已提交
1407
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1408 1409 1410 1411 1412
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1413
      idx2feeds_[idx] = op->Output("Out")[0];
1414
    } else if (op->Type() == "fetch") {
R
Ruibiao Chen 已提交
1415
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1416 1417
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1418
      }
Y
Yan Chunwei 已提交
1419
      fetches_[idx] = op;
N
nhzlx 已提交
1420
      idx2fetches_[idx] = op->Input("X")[0];
1421 1422 1423 1424
    }
  }
}

1425
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1426 1427 1428
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1429
  auto *var = scope->Var("feed");
1430
  var->GetMutable<framework::FeedList>();
1431
  var = scope->Var("fetch");
1432
  var->GetMutable<framework::FetchList>();
1433 1434
}

N
nhzlx 已提交
1435 1436 1437 1438 1439 1440 1441 1442
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1443 1444 1445 1446 1447 1448
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1449 1450 1451
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1452 1453 1454 1455 1456
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1488 1489 1490 1491 1492 1493 1494 1495
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1496 1497
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1498
  framework::Scope *scope;
1499
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1500 1501 1502 1503 1504 1505 1506 1507
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1508
  PADDLE_ENFORCE_NOT_NULL(
1509
      scope->FindVar(name),
1510
      platform::errors::PreconditionNotMet(
1511
          "The variable named %s is not found in the scope of the executor.",
1512
          name));
1513 1514
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1515 1516
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1517 1518
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1519 1520 1521 1522
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1523
  } else if (platform::is_xpu_place(place_)) {
1524 1525 1526 1527 1528 1529 1530 1531
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1532
      auto xpu_place = place_;
1533 1534
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1535
  } else if (platform::is_npu_place(place_)) {
1536
    auto npu_place = place_;
W
Wilber 已提交
1537
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1538 1539 1540 1541 1542 1543
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1544
  } else {
1545
    auto gpu_place = place_;
N
nhzlx 已提交
1546 1547
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1548 1549 1550 1551 1552
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1553
  framework::Scope *scope;
1554
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1555 1556 1557 1558 1559 1560 1561 1562
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1563
  PADDLE_ENFORCE_NOT_NULL(
1564
      scope->FindVar(name),
1565
      platform::errors::PreconditionNotMet(
1566
          "The variable named %s is not found in the scope of the executor.",
1567
          name));
1568 1569
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1570 1571
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1572 1573
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1574 1575 1576 1577
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1578
  } else if (platform::is_xpu_place(place_)) {
1579 1580 1581 1582 1583 1584 1585 1586
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1587
      auto xpu_place = place_;
1588 1589
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1590
  } else if (platform::is_npu_place(place_)) {
1591
    auto npu_place = place_;
W
Wilber 已提交
1592
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1593 1594 1595 1596 1597 1598
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1599
  } else {
1600
    auto gpu_place = place_;
N
nhzlx 已提交
1601 1602
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1603 1604 1605 1606
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1607
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1618 1619 1620
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1621
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1633
  executor_->Run();
1634 1635 1636 1637 1638

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1639
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1640
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1641
  tensor_array_batch_cleaner_.ResetTensorArray();
1642 1643 1644 1645

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1646 1647 1648
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
1649 1650 1651
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1652
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1653 1654 1655 1656 1657
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1658 1659 1660
  return true;
}

W
Wilber 已提交
1661 1662
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
1688 1689 1690 1691
  return ZeroCopyRun();
}
#endif

1692 1693 1694 1695 1696 1697
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1698
    auto gpu_place = place_;
L
Leo Chen 已提交
1699
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(gpu_place));
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
    if (!var->IsType<framework::LoDTensor>()) {
      continue;
    }
    framework::DDim dim = var->Get<framework::LoDTensor>().dims();
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
  for (auto it : shape_info_) {
    auto name = it.first;
    auto shapes = it.second;

    std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

    auto ShapeMaxFreq = [](const std::map<int32_t, int32_t> &m) -> int32_t {
      std::vector<std::pair<int32_t, int32_t>> counter;
      for (auto &it : m) counter.push_back(it);
      std::sort(
C
ccrrong 已提交
1737 1738
          counter.begin(),
          counter.end(),
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
          [](std::pair<int32_t, int32_t> &a, std::pair<int32_t, int32_t> &b) {
            return a.second > b.second;
          });
      return counter[0].first;
    };

    for (size_t d = 0; d < shapes[0].size(); ++d) {
      std::map<int32_t, int32_t> counter;
      for (size_t i = 0; i < shapes.size(); ++i) {
        counter[shapes[i][d]] += 1;
        if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
        if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
      }
      opt_shape[d] = ShapeMaxFreq(counter);
    }

    min_shapes[name] = min_shape;
    max_shapes[name] = max_shape;
    opt_shapes[name] = opt_shape;
  }

C
ccrrong 已提交
1760 1761
  inference::SerializeShapeRangeInfo(
      config_.shape_range_info_path(), min_shapes, max_shapes, opt_shapes);
1762 1763
}

1764 1765
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1766
  std::string filename;
1767 1768
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1769
  } else if (!config_.prog_file().empty()) {
1770 1771 1772
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1773
    filename = config_.prog_file();
1774
  } else {
1775
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1776 1777 1778 1779
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1780
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
1781 1782
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
1783
        config_.params_file());
1784 1785
    return false;
  }
1786 1787 1788

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1789
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1790 1791 1792
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1793
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1794 1795
        static_cast<bool>(fin.is_open()),
        true,
1796 1797 1798
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1799 1800 1801 1802 1803 1804 1805 1806
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1807
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1808
  }
1809 1810 1811 1812 1813 1814
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1815 1816
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1838
      if (!config_.params_file().empty()) {
1839 1840 1841 1842 1843 1844
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1845
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1846 1847 1848 1849 1850
        op->CheckAttrs();
      }
    }
  }

1851
  if (!config_.params_file().empty()) {
1852 1853 1854 1855 1856 1857
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1858
    op->SetAttr("file_path", {config_.params_file()});
1859 1860 1861 1862
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1863
  framework::NaiveExecutor e(place_);
1864 1865 1866 1867
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1868 1869
  return true;
}
1870

1871 1872 1873 1874 1875
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1895
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1896
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
1897 1898
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
1899 1900
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1901 1902 1903
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
1904
      std::string engine_name = PADDLE_GET_CONST(
1905
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1906
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1907 1908 1909 1910
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1911 1912
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1913
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1914
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1915 1916
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1917 1918 1919
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1920

N
nhzlx 已提交
1921
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1922 1923 1924
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1925

N
nhzlx 已提交
1926 1927 1928 1929 1930
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1931
      std::string calibration_table_data_path =
N
nhzlx 已提交
1932 1933 1934 1935
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1936 1937 1938 1939 1940

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1941 1942 1943 1944
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1945
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1946 1947
  return true;
}
N
nhzlx 已提交
1948
#endif
N
nhzlx 已提交
1949

1950
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1951
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1952
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1953 1954
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1955 1956
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1957
#endif
1958
  if (config_.with_profile_) {
1959 1960 1961 1962
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
1972 1973
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1974

1975 1976 1977 1978 1979 1980
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1981

1982 1983 1984
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
1985 1986 1987 1988 1989
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
1990 1991 1992
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
1993
  device_contexts_.clear();
1994 1995
}

1996
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
1997
  std::lock_guard<std::mutex> lk(clone_mutex_);
1998
  auto *x = new AnalysisPredictor(config_);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
  x->status_is_cloned_ = true;
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2010
  x->Init(scope_, inference_program_);
2011
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2012 2013 2014
  return std::unique_ptr<PaddlePredictor>(x);
}

2015
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2016 2017 2018
  return inference_program_->Proto()->SerializeAsString();
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
2058
template <>
2059 2060
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2061
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2062 2063
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2064 2065
}

2066
}  // namespace paddle
2067 2068 2069

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2070 2071 2072 2073
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
USE_TRT_CONVERTER(elementwise_pow_weight);
2074 2075 2076 2077 2078 2079 2080
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
2081
USE_TRT_CONVERTER(transpose);
2082
USE_TRT_CONVERTER(transpose2);
2083
USE_TRT_CONVERTER(flatten);
2084
USE_TRT_CONVERTER(flatten_contiguous_range);
2085
USE_TRT_CONVERTER(matmul);
2086 2087
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
Z
zhupengyang 已提交
2088 2089
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
2090 2091 2092 2093 2094 2095 2096 2097 2098
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2099 2100
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2101
USE_TRT_CONVERTER(split);
2102 2103
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2104
USE_TRT_CONVERTER(leaky_relu);
2105 2106
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
2107
USE_TRT_CONVERTER(group_norm);
2108
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2109 2110 2111
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2112 2113
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
2114
USE_TRT_CONVERTER(slice);
2115
USE_TRT_CONVERTER(scale);
2116
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2117
USE_TRT_CONVERTER(clip);
2118
USE_TRT_CONVERTER(gather);
2119
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2120
USE_TRT_CONVERTER(yolo_box);
2121
USE_TRT_CONVERTER(yolo_box_head);
2122
USE_TRT_CONVERTER(arg_max);
2123
USE_TRT_CONVERTER(roi_align);
2124
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2125
USE_TRT_CONVERTER(multiclass_nms);
2126
USE_TRT_CONVERTER(multiclass_nms3);
2127
USE_TRT_CONVERTER(nearest_interp);
2128
USE_TRT_CONVERTER(nearest_interp_v2);
2129
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2130
USE_TRT_CONVERTER(reshape);
2131
USE_TRT_CONVERTER(reshape2);
2132 2133
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2134
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
2135
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2136 2137
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2138
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2139
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2140
USE_TRT_CONVERTER(pool3d)
2141 2142
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
2143 2144
USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2145
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2146
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2147 2148
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2149
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2150
USE_TRT_CONVERTER(cast)
2151 2152
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2153
USE_TRT_CONVERTER(equal);
2154 2155
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2156 2157
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2158 2159
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2160
USE_TRT_CONVERTER(fill_constant)
2161
USE_TRT_CONVERTER(fused_token_prune)
2162 2163 2164 2165
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2166
#endif
W
Wilber 已提交
2167 2168 2169 2170 2171 2172

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2183 2184 2185 2186
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2187 2188 2189 2190 2191 2192 2193 2194 2195
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2196 2197 2198 2199
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2200 2201 2202 2203 2204
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2205 2206 2207 2208

std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2209 2210

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2211
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2212 2213 2214 2215 2216 2217 2218
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2219
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2220 2221 2222 2223
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2224 2225
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2226 2227 2228 2229 2230 2231 2232 2233
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2234 2235
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2236 2237
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2272 2273 2274 2275
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
                             BackendType backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2307 2308
      size,
      1UL,
W
Wilber 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2327 2328
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2329
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2330 2331
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2332 2333 2334 2335 2336 2337 2338
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2359

2360 2361 2362 2363 2364 2365
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2381 2382 2383 2384 2385
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
2386
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2396
}  // namespace experimental
W
Wilber 已提交
2397
}  // namespace paddle_infer