analysis_predictor.cc 32.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "paddle/fluid/framework/feed_fetch_method.h"
24
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26
#include "paddle/fluid/framework/ir/pass.h"
27
#include "paddle/fluid/framework/naive_executor.h"
28
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/framework/var_type_traits.h"
30
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
32
#include "paddle/fluid/inference/api/helper.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/memory/memcpy.h"
37
#include "paddle/fluid/platform/cpu_helper.h"
38
#include "paddle/fluid/platform/gpu_info.h"
39
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
40 41
#include "paddle/fluid/platform/profiler.h"

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
46 47
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
48
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
49 50
#endif

N
nhzlx 已提交
51
#if PADDLE_WITH_ANAKIN
52
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
N
nhzlx 已提交
53
#endif
54

T
tensor-tang 已提交
55
DECLARE_bool(profile);
56 57 58

namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
78
bool AnalysisPredictor::Init(
79 80
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
81
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
82 83 84
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
85 86
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
87 88 89
    platform::EnableProfiler(tracking_device);
  }

90
  // no matter with or without MKLDNN
L
luotao1 已提交
91
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
92

93 94 95 96 97 98 99 100 101 102 103 104 105
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
106
  }
107 108 109 110 111 112 113 114 115

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
116
  if (parent_scope) {
117 118 119
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
120
    scope_ = parent_scope;
121
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
122
  } else {
Z
Zhaolong Xing 已提交
123 124 125 126 127
    if (config_.use_gpu_) {
      paddle::framework::InitDevices(false, {config_.device_id_});
    } else {
      paddle::framework::InitDevices(false, {});
    }
Y
Yan Chunwei 已提交
128
    scope_.reset(new paddle::framework::Scope());
129
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
130
  }
131 132 133 134 135
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
136 137
  if (!program) {
    if (!LoadProgramDesc()) return false;
138

139 140 141 142 143 144 145 146 147
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

148 149 150
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
151
    if (config_.ir_optim()) {
152 153 154 155 156 157 158
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
159
  } else {
160 161
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
162 163
    inference_program_ = program;
  }
M
Michal Gallus 已提交
164

165 166 167 168 169
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
170
  if (config_.use_gpu_) {
171
    status_use_gpu_ = true;
172
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
173 174 175 176 177 178 179 180
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
181
                     config_.use_feed_fetch_ops_);
182

183
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
184

185 186 187 188 189 190
  return true;
}

bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
191
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
M
minqiyang 已提交
192
  VLOG(3) << "Predictor::predict";
193 194 195 196
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
197
  PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr.");
198 199
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
200
    return false;
201
  }
M
Michal Gallus 已提交
202

203 204 205
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
206

207 208 209 210
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
211
  }
Y
Yan Chunwei 已提交
212 213 214 215 216 217

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
218
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
219

Y
Yan Chunwei 已提交
220 221 222 223 224
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
225 226 227
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
228
  tensor_array_batch_cleaner_.ResetNoTensorVars();
229 230 231 232 233

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);

234 235
  return true;
}
236

237 238
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
239
  VLOG(3) << "Predictor::set_feed";
240 241 242 243 244 245 246 247 248 249 250 251 252 253
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
254
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
255
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
256
      input_ptr = input.mutable_data<float>(ddim, place_);
257 258
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
259 260 261 262 263
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

L
liuwei1031 已提交
264 265 266
    PADDLE_ENFORCE_NOT_NULL(input_ptr);
    PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());

267 268 269 270 271 272
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
273 274 275 276
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
277 278 279
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
280
                   inputs[i].data.length(), dev_ctx->stream());
281 282 283 284
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
285 286 287 288 289 290 291
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
292
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
293 294
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
295 296
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
297 298
      }
      idx = feed_names_[name];
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
329
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
330 331 332
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
333 334 335 336 337
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
338
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
339
    if (type == framework::proto::VarType::FP32) {
340 341
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
342
    } else if (type == framework::proto::VarType::INT64) {
343 344
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
345 346 347
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
348
    } else {
349
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
350 351
    }
  }
Y
Yan Chunwei 已提交
352 353
  return true;
}
354

355
void AnalysisPredictor::PrepareArgument() {
356 357
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
358
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
359 360 361
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
362
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
363
  // Analyze inference_program
364 365
  argument_.SetUseAnakin(config_.anakin_engine_enabled());
  argument_.SetPredictorID(predictor_id_);
366
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
367 368
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
369 370
  } else {
    PADDLE_ENFORCE(
371
        !config_.params_file().empty(),
T
Tao Luo 已提交
372
        "Either model_dir or (param_file, prog_file) should be set.");
373
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
374
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
375

376 377
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
378
  }
379

380
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
381
    LOG(INFO) << "TensorRT subgraph engine is enabled";
382 383 384
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
385
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
386
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
387
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
388
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
W
Wojciech Uss 已提交
389
  }
390

391
  if (config_.anakin_engine_enabled()) {
392
    argument_.SetAnakinMaxBatchSize(config_.anakin_max_batchsize_);
393
    argument_.SetAnakinMaxInputShape(config_.anakin_max_input_shape_);
394
    argument_.SetAnakinMinSubgraphSize(config_.anakin_min_subgraph_size_);
395 396 397 398
    argument_.SetAnakinPrecisionMode(config_.anakin_precision_mode_);
    argument_.SetAnakinAutoConfigLayout(config_.anakin_auto_config_layout_);
    argument_.SetAnakinPassesFilter(config_.anakin_passes_filter_);
    argument_.SetAnakinOpsFilter(config_.anakin_ops_filter_);
399 400 401
    LOG(INFO) << "Anakin subgraph engine is enabled";
  }

402
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
403
    LOG(INFO) << "MKLDNN is enabled";
404 405 406
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

407 408 409 410 411 412 413 414 415 416
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

417
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
418 419 420 421
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
422
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
423
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
424
  argument_.SetScopeNotOwned(scope_.get());
425 426 427 428 429 430 431
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  status_program_optimized_ = true;

  PrepareArgument();
432 433 434 435 436
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
437
  inference_program_.reset(
438
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
439 440 441 442
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
443
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
444
}
445 446

template <>
447 448
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
449
  VLOG(3) << "create AnalysisConfig";
450 451
  PADDLE_ENFORCE(config.is_valid(),
                 "Note: Each config can only be used for one predictor.");
452
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
453
    // 1. GPU memory
454
    PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f);
455 456
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
457
    std::vector<std::string> flags;
458 459 460 461 462 463 464 465 466 467 468

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
469 470
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
471
                         std::to_string(fraction_of_gpu_memory);
472
      flags.push_back(flag);
Z
Zhaolong Xing 已提交
473 474
      flags.push_back("--selected_gpus=" +
                      std::to_string(config.gpu_device_id()));
M
minqiyang 已提交
475
      VLOG(3) << "set flag: " << flag;
476 477 478 479 480
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
481 482
  // Each config can only be used for one predictor.
  config.SetInValid();
483 484 485 486 487 488 489
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
490 491
    return nullptr;
  }
492

G
Gabor Buella 已提交
493
  return predictor;
494 495
}

496 497 498 499 500 501 502 503 504 505 506 507
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

508
void AnalysisPredictor::PrepareFeedFetch() {
509 510
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
511 512 513 514 515 516 517 518
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
519
      idx2feeds_[idx] = op->Output("Out")[0];
520 521
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
522 523
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
524
      }
Y
Yan Chunwei 已提交
525
      fetches_[idx] = op;
N
nhzlx 已提交
526
      idx2fetches_[idx] = op->Input("X")[0];
527 528 529 530
    }
  }
}

531 532 533 534 535 536 537 538
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

555 556 557 558 559 560 561
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
562 563 564 565 566 567 568
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

569 570 571 572 573 574 575 576 577 578
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
579 580 581 582 583 584
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
585 586 587 588
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
589
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
590
  executor_->Run();
Y
Yan Chunwei 已提交
591
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
592
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
593
  tensor_array_batch_cleaner_.ResetTensorArray();
594 595 596 597 598

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);

599 600 601 602 603
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
604
  std::string filename;
605 606 607
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
608 609 610
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
611
    filename = config_.prog_file();
612
  } else {
613
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
614 615 616 617
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
618
    LOG(ERROR) << string::Sprintf(
619 620
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
621 622
    return false;
  }
623 624 625

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
626
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
627 628 629
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
630 631
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
632 633 634 635 636 637 638 639
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
640
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
641
  }
642 643 644 645 646 647 648
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

670
      if (!config_.params_file().empty()) {
671 672 673 674 675 676
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
677
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
678 679 680 681 682
        op->CheckAttrs();
      }
    }
  }

683
  if (!config_.params_file().empty()) {
684 685 686 687 688 689
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
690
    op->SetAttr("file_path", {config_.params_file()});
691 692 693 694
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
695
  framework::NaiveExecutor e(place_);
696 697 698 699
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

700 701
  return true;
}
702

N
nhzlx 已提交
703
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
704 705 706 707 708 709 710 711
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
712
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
713 714 715 716
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
717 718
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
719
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
720
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
721 722
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
723 724 725
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
726

N
nhzlx 已提交
727
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
728 729 730
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
731

N
nhzlx 已提交
732 733 734 735 736
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
737
      std::string calibration_table_data_path =
N
nhzlx 已提交
738 739 740 741
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
742 743 744 745 746

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
747 748 749 750
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
751
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
752 753
  return true;
}
N
nhzlx 已提交
754
#endif
N
nhzlx 已提交
755

756
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
757
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
758
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
759 760
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
761 762
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
763
#endif
764 765 766 767 768 769 770
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
771

772 773 774 775 776 777 778
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif

Y
Yan Chunwei 已提交
779 780 781 782 783 784
  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
785 786
}

787
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
788
  std::lock_guard<std::mutex> lk(clone_mutex_);
789 790 791 792 793
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
841
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
842 843 844
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
845 846
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
847 848 849 850 851 852 853
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

854
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
855 856 857
  return inference_program_->Proto()->SerializeAsString();
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
897
template <>
898 899 900 901
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
902 903
}

904
}  // namespace paddle
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
927
USE_TRT_CONVERTER(split);
928 929
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
930
USE_TRT_CONVERTER(leaky_relu);
931
#endif
932

N
nhzlx 已提交
933
#if PADDLE_WITH_ANAKIN
934
USE_ANAKIN_CONVERTER(mul);
935 936
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
937
USE_ANAKIN_CONVERTER(conv2d_fusion);
938 939 940 941 942 943 944
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
945
USE_ANAKIN_CONVERTER(elementwise_mul);
946 947 948 949 950 951 952
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);
USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);
953 954
USE_ANAKIN_CONVERTER(dropout);
USE_ANAKIN_CONVERTER(sum);
N
nhzlx 已提交
955
USE_ANAKIN_CONVERTER(prior_box);
956 957 958 959 960
USE_ANAKIN_CONVERTER(leaky_relu);
USE_ANAKIN_CONVERTER(affine_channel);
USE_ANAKIN_CONVERTER(relu6);
USE_ANAKIN_CONVERTER(swish);
USE_ANAKIN_CONVERTER(shuffle_channel);
N
nhzlx 已提交
961
#endif