analysis_predictor.cc 83.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
30
#include "paddle/fluid/framework/generator.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
36
#include "paddle/fluid/framework/var_type_traits.h"
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/inference/analysis/helper.h"
39
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
40
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
41
#include "paddle/fluid/inference/api/helper.h"
42
#include "paddle/fluid/inference/api/infer_context.h"
43
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
44
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
45
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
46
#include "paddle/fluid/inference/utils/io_utils.h"
47
#include "paddle/fluid/inference/utils/model_utils.h"
48
#include "paddle/fluid/inference/utils/singleton.h"
49
#include "paddle/fluid/memory/memcpy.h"
50
#include "paddle/fluid/platform/cpu_helper.h"
51
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
52
#include "paddle/fluid/platform/device_context.h"
53
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
54
#include "paddle/fluid/platform/profiler.h"
55
#include "paddle/phi/api/ext/op_meta_info.h"
56 57
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
58
#include "paddle/phi/common/place.h"
59 60
#include "paddle/utils/string/split.h"

61
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
62 63 64 65
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
66

67 68 69 70
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

71 72 73 74
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

75 76 77 78
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

Y
Yan Chunwei 已提交
79 80
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
81
#include "paddle/fluid/inference/tensorrt/helper.h"
82
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
83 84
#endif

85 86 87 88
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

89 90
namespace paddle {

N
nhzlx 已提交
91
using inference::Singleton;
N
nhzlx 已提交
92
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
93 94
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
95
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
96
#endif
97

98 99
int AnalysisPredictor::clone_num_ = 1;

100 101 102 103
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
104 105
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
106 107 108 109
    return true;
  }
  return false;
}
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

phi::Backend ConvertBackend(AnalysisConfig::Backend backend) {
  switch (backend) {
    case AnalysisConfig::Backend::kGPU:
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
    case AnalysisConfig::Backend::kNPU:
      return phi::Backend::NPU;
    case AnalysisConfig::Backend::kXPU:
      return phi::Backend::XPU;
    case AnalysisConfig::Backend::kCPU:
      return phi::Backend::CPU;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
147 148
}  // namespace

C
ccrrong 已提交
149 150
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
                             framework::LoDTensor *t,
151
                             const platform::Place &place) {
152
  framework::DDim ddim = phi::make_ddim(pt.shape);
153 154 155 156 157 158 159
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
160 161
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
C
ccrrong 已提交
178 179
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
180 181
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
182 183
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
184 185 186 187
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
188
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
189 190
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
191 192
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
193
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
194 195 196
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
197
    auto dst_gpu_place = place;
C
ccrrong 已提交
198 199 200 201 202
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
203 204 205 206 207
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
208 209
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
210
    auto dst_xpu_place = place;
C
ccrrong 已提交
211 212 213 214 215
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
216 217 218 219 220 221 222
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
223 224 225 226 227 228 229 230 231 232
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
233
bool AnalysisPredictor::Init(
234 235
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
236
  VLOG(3) << "Predictor::init()";
237 238
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
239 240
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
241
    platform::EnableProfiler(tracking_device);
242
  } else {
243 244
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
245 246
  }

247
  // no matter with or without MKLDNN
L
luotao1 已提交
248
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
249

250 251 252
  if (!PrepareScope(parent_scope)) {
    return false;
  }
253 254 255

  InitPlace();

256 257 258 259 260 261 262
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

263 264 265
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

266 267 268
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
269
  }
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
        static_cast<platform::CUDADeviceContext *>(
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
291
  }
292
#endif
293 294
  return true;
}
295

296
void AnalysisPredictor::InitPlace() {
297
  if (config_.use_gpu()) {
C
ccrrong 已提交
298 299
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
300 301
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
302
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
303
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
304 305 306 307 308 309 310 311
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
312
  } else if (config_.use_xpu()) {
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
336 337 338 339 340 341 342 343
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
360 361 362 363 364 365 366
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
367 368 369 370 371 372 373 374 375
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
376
#endif
377 378 379
  } else {
    place_ = paddle::platform::CPUPlace();
  }
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
          auto *gpu_context = new InferGPUContext();
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
          gpu_context->SetGenerator(
              framework::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get());

          gpu_context->SetStream(gpu_resource->GetStream());
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandle());
          gpu_context->SetBlasTensorCoreHandle(
              gpu_resource->GetBlasTensorCoreHandle());
          gpu_context->SetBlasTF32Handle(gpu_resource->GetBlasTF32Handle());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandle());
          gpu_context->SetSolverHandle(gpu_resource->GetSolverDnHandle());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandle());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDevice());
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  } else {
    return nullptr;
  }
  return nullptr;
#else
  // TODO(inference): Support other backends.
  return nullptr;
#endif
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
    paddle::framework::InitDevices();
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
521 522
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
523 524 525 526 527 528 529 530 531 532 533 534 535
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
  }

  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}

bool AnalysisPredictor::CreateExecutor() {
536 537 538
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
558 559
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
560 561 562 563 564 565 566 567 568
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
569 570
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
571 572
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
573 574 575
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
576 577 578
  }
}

579
bool AnalysisPredictor::PrepareExecutor() {
580
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
581 582 583 584 585
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
586 587
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
588 589
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
590

591 592 593
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
594

595 596 597
  return true;
}

598
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
635 636 637 638 639 640 641
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
678 679 680 681 682 683
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
684 685 686 687 688 689 690 691 692 693 694
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
695 696 697 698 699
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
756 757
      static_cast<bool>(fin.is_open()),
      true,
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

830 831
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
832 833 834 835 836 837 838 839 840 841 842 843
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
844
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
845 846 847
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
848 849 850
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
851 852
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
853 854 855
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
856 857 858
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
859
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
860
  }
861 862 863
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

864 865 866 867 868 869
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
870 871 872 873
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
874 875 876 877 878 879 880 881
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
882 883 884
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
885 886 887 888
  }
#endif
}

889 890 891
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
892
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
893 894 895
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
896
  VLOG(3) << "Predictor::predict";
897 898 899 900
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
901 902 903
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
904 905
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
906
    return false;
907
  }
M
Michal Gallus 已提交
908

909 910 911
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
912

913 914 915 916
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
917
  }
Y
Yan Chunwei 已提交
918

M
minqiyang 已提交
919
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
920

Y
Yan Chunwei 已提交
921 922 923 924 925
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
926 927 928
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
929
  tensor_array_batch_cleaner_.ResetNoTensorVars();
930 931 932 933

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
934 935
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
936
#endif
937
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
938 939 940 941
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
942
#endif
943 944
  return true;
}
945

946 947
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
948
  VLOG(3) << "Predictor::set_feed";
949 950 951 952 953 954 955 956 957 958
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
959 960
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
961 962 963
      return false;
    }
    int idx = -1;
964
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
965 966
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
967 968
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
969 970
      }
      idx = feed_names_[name];
971
    } else {
972
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
973
    }
974
    framework::SetFeedVariable(scope, *input, "feed", idx);
975 976 977 978 979 980 981 982
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
983
  auto shape = phi::vectorize(fetch.dims());
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1001
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1002 1003
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
1004
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
1005
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1006 1007
        static_cast<size_t>(idx),
        i,
1008
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1009 1010
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1011
            i));
1012
    framework::FetchType &fetch_var =
1013
        framework::GetFetchVariable(*scope, "fetch", idx);
1014
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
1015
    auto type = framework::TransToProtoVarType(fetch.dtype());
1016
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1017
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1018
    if (type == framework::proto::VarType::FP32) {
1019 1020
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1021
    } else if (type == framework::proto::VarType::INT64) {
1022 1023
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1024 1025 1026
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1027 1028 1029
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1030
    } else {
1031 1032
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1033 1034
    }
  }
Y
Yan Chunwei 已提交
1035 1036
  return true;
}
1037

1038
void AnalysisPredictor::PrepareArgument() {
1039
  argument_.SetUseGPU(config_.use_gpu());
1040
  argument_.SetUseFcPadding(config_.use_fc_padding());
1041
  argument_.SetGPUDeviceId(config_.gpu_device_id());
1042
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
1043
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
1044
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1045
  // Analyze inference_program
1046
  argument_.SetPredictorID(predictor_id_);
1047
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
1048 1049
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1050
  } else {
C
ccrrong 已提交
1051 1052
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1053 1054
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1055
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
1056

1057 1058
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1059
  }
1060

1061
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
1062
  argument_.SetTensorRtUseOSS(config_.trt_use_varseqlen_);
1063
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
1064 1065
  argument_.SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_.SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
1066 1067 1068 1069 1070
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
1071
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1072
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1073 1074 1075
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
1076
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
1077
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
1078 1079
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
1080
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
1081
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
1082
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
1083 1084 1085
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
1086
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
W
Wojciech Uss 已提交
1087
  }
1088

D
denglin-github 已提交
1089 1090 1091 1092 1093 1094
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

石晓伟 已提交
1095
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
1096 1097
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
1098 1099 1100
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
1101 1102 1103
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
1104 1105 1106 1107 1108
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
1109
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1130 1131 1132
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1133
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
1134 1135
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
1136
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
1137 1138
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
1139 1140 1141 1142 1143 1144
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
#endif
J
jianghaicheng 已提交
1145

1146 1147 1148
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

1149
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1150
    LOG(INFO) << "MKLDNN is enabled";
1151 1152 1153
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

1154 1155 1156 1157 1158 1159 1160 1161
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1162 1163 1164 1165
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
B
baoachun 已提交
1166 1167 1168 1169 1170 1171 1172

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
    argument_.SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_.SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_.SetQuantVarScales({});
  }
1173 1174
#endif

1175
  auto passes = config_.pass_builder()->AllPasses();
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
              << ", we will use a new PassStrategy. Note that only the GPU "
                 "backend is supported for now.";
    passes.clear();
    if (config_.tensorrt_engine_enabled()) {
      for (const auto &pass : kTrtLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    } else if (config_.use_gpu()) {
      for (const auto &pass : kGpuLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    }

    const auto &deleted_passes = config_.pass_builder()->GetAllDeletedPasses();
    for (const auto &it : deleted_passes) {
      auto iterator = std::find(passes.begin(), passes.end(), it);
      if (iterator != passes.end()) {
        passes.erase(iterator);
      }
    }

    if (config_.ir_debug_) {
      auto it = std::begin(passes);
      while (it != std::end(passes)) {
        if (*it != "graph_viz_pass") {
          it = passes.insert(it + 1, "graph_viz_pass");
        } else {
          ++it;
        }
      }
    }
  }
Y
Yan Chunwei 已提交
1210 1211 1212 1213
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
1214
  argument_.SetDisableLogs(config_.glog_info_disabled());
1215
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
1216
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
1217
  argument_.SetScopeNotOwned(scope_.get());
1218

1219
  // mixed precison.
1220
  argument_.SetModelPrecision(static_cast<int>(model_precision_));
1221
  argument_.SetMixedBlackList(config_.mixed_black_list_);
1222 1223 1224 1225 1226
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1227 1228
  Analyzer().Run(&argument_);

1229
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1230 1231
      argument_.scope_valid(),
      true,
1232
      platform::errors::InvalidArgument("The argument scope should be valid."));
1233 1234
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
1235
  inference_program_.reset(
1236 1237 1238 1239 1240
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
#if PADDLE_WITH_TENSORRT
W
Wilber 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
                BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
            int engine_predictor_id =
                BOOST_GET_CONST(int, op_desc->GetAttr("predictor_id"));
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1259 1260 1261
#endif
        delete prog;
      });
1262 1263 1264 1265
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1266
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1267
}
1268 1269

template <>
1270 1271 1272
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1273 1274
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1275 1276 1277 1278
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1279
  VLOG(3) << "create AnalysisConfig";
1280
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1281 1282
      config.is_valid(),
      true,
1283 1284
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1285

1286 1287 1288 1289
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1290
                 []() { inference::RegisterAllCustomOperator(); });
1291

1292
  if (config.use_gpu()) {
1293 1294 1295 1296 1297 1298
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1299 1300
          config.memory_pool_init_size_mb(),
          0.f,
1301 1302 1303
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1304 1305
          config.gpu_device_id(),
          0,
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1319

1320 1321 1322 1323 1324 1325 1326
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
      }

1327 1328 1329 1330 1331 1332 1333 1334 1335
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1351 1352 1353 1354 1355 1356
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1357 1358 1359 1360
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1361 1362
  // Each config can only be used for one predictor.
  config.SetInValid();
1363 1364
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1365 1366 1367 1368
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1369 1370 1371 1372 1373
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1374 1375
    return nullptr;
  }
1376

G
Gabor Buella 已提交
1377
  return predictor;
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1392
void AnalysisPredictor::PrepareFeedFetch() {
1393 1394 1395
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1396
  CreateFeedFetchVar(sub_scope_);
1397 1398
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
1399
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
1400 1401 1402 1403 1404
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1405
      idx2feeds_[idx] = op->Output("Out")[0];
1406
    } else if (op->Type() == "fetch") {
1407
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1408 1409
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1410
      }
Y
Yan Chunwei 已提交
1411
      fetches_[idx] = op;
N
nhzlx 已提交
1412
      idx2fetches_[idx] = op->Input("X")[0];
1413 1414 1415 1416
    }
  }
}

1417
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1418 1419 1420
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1421
  auto *var = scope->Var("feed");
1422
  var->GetMutable<framework::FeedList>();
1423
  var = scope->Var("fetch");
1424
  var->GetMutable<framework::FetchList>();
1425 1426
}

N
nhzlx 已提交
1427 1428 1429 1430 1431 1432 1433 1434
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1435 1436 1437 1438 1439 1440
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1441 1442 1443
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1444 1445 1446 1447 1448
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
1449 1450 1451 1452 1453 1454 1455 1456
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1457 1458
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1459
  framework::Scope *scope;
1460
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1461 1462 1463 1464 1465 1466 1467 1468
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1469
  PADDLE_ENFORCE_NOT_NULL(
1470
      scope->FindVar(name),
1471
      platform::errors::PreconditionNotMet(
1472
          "The variable named %s is not found in the scope of the executor.",
1473
          name));
1474 1475
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1476 1477
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1478 1479
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1480 1481 1482 1483
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1484
  } else if (platform::is_xpu_place(place_)) {
1485 1486 1487 1488 1489 1490 1491 1492
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1493
      auto xpu_place = place_;
1494 1495
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1496
  } else if (platform::is_npu_place(place_)) {
1497
    auto npu_place = place_;
W
Wilber 已提交
1498
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1499 1500 1501 1502 1503 1504
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1505
  } else {
1506
    auto gpu_place = place_;
N
nhzlx 已提交
1507 1508
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1509 1510 1511 1512 1513
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1514
  framework::Scope *scope;
1515
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1516 1517 1518 1519 1520 1521 1522 1523
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1524
  PADDLE_ENFORCE_NOT_NULL(
1525
      scope->FindVar(name),
1526
      platform::errors::PreconditionNotMet(
1527
          "The variable named %s is not found in the scope of the executor.",
1528
          name));
1529 1530
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1531 1532
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1533 1534
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1535 1536 1537 1538
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1539
  } else if (platform::is_xpu_place(place_)) {
1540 1541 1542 1543 1544 1545 1546 1547
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1548
      auto xpu_place = place_;
1549 1550
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1551
  } else if (platform::is_npu_place(place_)) {
1552
    auto npu_place = place_;
W
Wilber 已提交
1553
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1554 1555 1556 1557 1558 1559
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1560
  } else {
1561
    auto gpu_place = place_;
N
nhzlx 已提交
1562 1563
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1564 1565 1566 1567
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1568
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1579 1580 1581
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1582
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1594
  executor_->Run();
1595 1596 1597 1598 1599

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1600
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1601
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1602
  tensor_array_batch_cleaner_.ResetTensorArray();
1603 1604 1605 1606

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1607 1608 1609
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
1610 1611 1612
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1613
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1614 1615 1616 1617 1618
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1619 1620 1621
  return true;
}

W
Wilber 已提交
1622 1623 1624 1625 1626
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
  if (stream != nullptr) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1627
    auto gpu_place = place_;
W
Wilber 已提交
1628 1629 1630 1631 1632 1633 1634 1635
    auto *dev_ctx = reinterpret_cast<paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
    dev_ctx->SetThreadLocalStream(stream);
  }
  return ZeroCopyRun();
}
#endif

1636 1637 1638 1639 1640 1641
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1642
    auto gpu_place = place_;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
    if (!var->IsType<framework::LoDTensor>()) {
      continue;
    }
    framework::DDim dim = var->Get<framework::LoDTensor>().dims();
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
  for (auto it : shape_info_) {
    auto name = it.first;
    auto shapes = it.second;

    std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

    auto ShapeMaxFreq = [](const std::map<int32_t, int32_t> &m) -> int32_t {
      std::vector<std::pair<int32_t, int32_t>> counter;
      for (auto &it : m) counter.push_back(it);
      std::sort(
C
ccrrong 已提交
1682 1683
          counter.begin(),
          counter.end(),
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
          [](std::pair<int32_t, int32_t> &a, std::pair<int32_t, int32_t> &b) {
            return a.second > b.second;
          });
      return counter[0].first;
    };

    for (size_t d = 0; d < shapes[0].size(); ++d) {
      std::map<int32_t, int32_t> counter;
      for (size_t i = 0; i < shapes.size(); ++i) {
        counter[shapes[i][d]] += 1;
        if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
        if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
      }
      opt_shape[d] = ShapeMaxFreq(counter);
    }

    min_shapes[name] = min_shape;
    max_shapes[name] = max_shape;
    opt_shapes[name] = opt_shape;
  }

C
ccrrong 已提交
1705 1706
  inference::SerializeShapeRangeInfo(
      config_.shape_range_info_path(), min_shapes, max_shapes, opt_shapes);
1707 1708
}

1709 1710
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1711
  std::string filename;
1712 1713
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1714
  } else if (!config_.prog_file().empty()) {
1715 1716 1717
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1718
    filename = config_.prog_file();
1719
  } else {
1720
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1721 1722 1723 1724
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1725
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
1726 1727
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
1728
        config_.params_file());
1729 1730
    return false;
  }
1731 1732 1733

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1734
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1735 1736 1737
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1738
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1739 1740
        static_cast<bool>(fin.is_open()),
        true,
1741 1742 1743
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1744 1745 1746 1747 1748 1749 1750 1751
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1752
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1753
  }
1754 1755 1756 1757 1758 1759
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1760 1761
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1783
      if (!config_.params_file().empty()) {
1784 1785 1786 1787 1788 1789
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1790
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1791 1792 1793 1794 1795
        op->CheckAttrs();
      }
    }
  }

1796
  if (!config_.params_file().empty()) {
1797 1798 1799 1800 1801 1802
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1803
    op->SetAttr("file_path", {config_.params_file()});
1804 1805 1806 1807
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1808
  framework::NaiveExecutor e(place_);
1809 1810 1811 1812
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1813 1814
  return true;
}
1815

1816 1817 1818 1819 1820
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1840
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1841
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
1842 1843
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
1844 1845
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1846 1847 1848
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
1849 1850
      std::string engine_name = BOOST_GET_CONST(
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1851
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1852 1853 1854 1855
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1856 1857
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1858
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1859
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1860 1861
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1862 1863 1864
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1865

N
nhzlx 已提交
1866
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1867 1868 1869
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1870

N
nhzlx 已提交
1871 1872 1873 1874 1875
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1876
      std::string calibration_table_data_path =
N
nhzlx 已提交
1877 1878 1879 1880
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1881 1882 1883 1884 1885

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1886 1887 1888 1889
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1890
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1891 1892
  return true;
}
N
nhzlx 已提交
1893
#endif
N
nhzlx 已提交
1894

1895
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1896
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1897
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1898 1899
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1900 1901
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1902
#endif
1903
  if (config_.with_profile_) {
1904 1905 1906 1907 1908 1909
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1910

1911 1912 1913 1914 1915 1916
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1917

1918 1919 1920
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
1921 1922 1923 1924 1925
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
1926 1927 1928
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
1929
  device_contexts_.clear();
1930 1931
}

1932
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
1933
  std::lock_guard<std::mutex> lk(clone_mutex_);
1934
  auto *x = new AnalysisPredictor(config_);
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
  x->status_is_cloned_ = true;
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
1946
  x->Init(scope_, inference_program_);
1947
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
1948 1949 1950
  return std::unique_ptr<PaddlePredictor>(x);
}

1951
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1952 1953 1954
  return inference_program_->Proto()->SerializeAsString();
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1994
template <>
1995 1996
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1997
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1998 1999
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2000 2001
}

2002
}  // namespace paddle
2003 2004 2005

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2006 2007 2008 2009
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
USE_TRT_CONVERTER(elementwise_pow_weight);
2010 2011 2012 2013 2014 2015 2016
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
2017
USE_TRT_CONVERTER(transpose);
2018
USE_TRT_CONVERTER(transpose2);
2019
USE_TRT_CONVERTER(flatten);
2020
USE_TRT_CONVERTER(flatten_contiguous_range);
2021
USE_TRT_CONVERTER(matmul);
2022 2023
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
Z
zhupengyang 已提交
2024 2025
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
2026 2027 2028 2029 2030 2031 2032 2033 2034
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2035 2036
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2037
USE_TRT_CONVERTER(split);
2038 2039
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2040
USE_TRT_CONVERTER(leaky_relu);
2041 2042
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
2043
USE_TRT_CONVERTER(group_norm);
2044
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2045 2046 2047
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2048 2049
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
2050
USE_TRT_CONVERTER(slice);
2051
USE_TRT_CONVERTER(scale);
2052
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2053
USE_TRT_CONVERTER(clip);
2054
USE_TRT_CONVERTER(gather);
2055
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2056
USE_TRT_CONVERTER(yolo_box);
2057
USE_TRT_CONVERTER(yolo_box_head);
2058
USE_TRT_CONVERTER(arg_max);
2059
USE_TRT_CONVERTER(roi_align);
2060
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2061
USE_TRT_CONVERTER(multiclass_nms);
2062
USE_TRT_CONVERTER(multiclass_nms3);
2063
USE_TRT_CONVERTER(nearest_interp);
2064
USE_TRT_CONVERTER(nearest_interp_v2);
2065
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2066
USE_TRT_CONVERTER(reshape);
2067
USE_TRT_CONVERTER(reshape2);
2068 2069
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2070
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
2071
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2072 2073
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2074
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2075
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2076
USE_TRT_CONVERTER(pool3d)
2077 2078
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
2079 2080
USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2081
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2082
USE_TRT_CONVERTER(strided_slice)
2083
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2084
USE_TRT_CONVERTER(cast)
2085 2086
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2087
USE_TRT_CONVERTER(equal);
2088 2089
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2090 2091
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2092
USE_TRT_CONVERTER(fill_constant)
2093
USE_TRT_CONVERTER(fused_token_prune)
2094 2095 2096 2097
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2098
#endif
W
Wilber 已提交
2099 2100 2101 2102 2103 2104

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2115 2116 2117 2118
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2119 2120 2121 2122 2123 2124 2125 2126 2127
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2128 2129 2130 2131
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2132 2133 2134 2135 2136 2137 2138
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2139
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2140 2141 2142 2143 2144 2145 2146
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2147
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2148 2149 2150 2151
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2152 2153
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2154 2155 2156 2157 2158 2159 2160 2161
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2162 2163
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2164 2165
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2200 2201 2202 2203
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
                             BackendType backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2235 2236
      size,
      1UL,
W
Wilber 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2255 2256
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2257
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2258 2259
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2260 2261 2262 2263 2264 2265 2266
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2287

2288 2289 2290 2291 2292 2293
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
  auto *dev_ctx = reinterpret_cast<paddle::platform::CUDADeviceContext *>(
      pool.Get(pred->place_));
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2325
}  // namespace experimental
W
Wilber 已提交
2326
}  // namespace paddle_infer