elementwise_mul_op.h 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include <string>
W
Wu Yi 已提交
17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
20
#include "paddle/fluid/operators/math/blas.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35
class ElementwiseMulOp : public ElementwiseOp {
 public:
  using Tensor = framework::Tensor;
  using ElementwiseOp::ElementwiseOp;

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
36
    if (platform::CanMKLDNNBeUsed(ctx)) {
37 38 39
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
40 41 42 43 44 45
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

46 47 48 49 50
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
51 52 53
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
54 55 56 57 58 59
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseMulFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseMulFunctor<T>(), z);
  }
60
}
61

62 63 64 65 66 67
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
68

Q
QI JUN 已提交
69
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
70
class ElementwiseMulKernel : public framework::OpKernel<T> {
71 72
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
73
    auto x_var = ctx.InputVar("X");
74 75 76 77
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
C
chengduo 已提交
78
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
79 80 81

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
82 83 84 85 86
      PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                        platform::errors::InvalidArgument(
                            "For elementwise_op, if X is Sparse, Y must be "
                            "scalar. But reveived the size of Y = %s.",
                            y->dims().size()));
C
chengduo 已提交
87 88 89 90 91 92 93 94 95 96 97 98
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
99 100 101 102
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
C
chengduo 已提交
103
    }
C
chengduoZH 已提交
104 105

    z->mutable_data<T>(ctx.GetPlace());
106 107
    auto dims_equal = x.dims() == y->dims();
    if (dims_equal) {
108 109
      SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
      same_dims_mul(ctx, &x, y, z);
110
    } else {
C
chengduo 已提交
111
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
112
    }
G
gongweibao 已提交
113 114
  }
};
115

G
gongweibao 已提交
116
template <typename T>
C
chengduoZH 已提交
117
struct MulGradDX {
C
chengduoZH 已提交
118
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
119 120
};

G
gongweibao 已提交
121
template <typename T>
C
chengduoZH 已提交
122
struct MulGradDY {
C
chengduoZH 已提交
123
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
124
};
C
chengduoZH 已提交
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
151
template <typename DeviceContext, typename T>
152
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
153 154
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
155
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
156 157 158 159 160
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
161
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
162 163 164
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
165 166 167 168 169 170 171
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_mul_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(),
          MulGradDY<T>());
    }
G
gongweibao 已提交
172 173
  }
};
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

197 198
    // dx = dout * ddy
    // dy = dout * ddx
199
    // ddout = ddx * y + x * ddy
200 201 202 203 204 205
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
206
    // (5) dx = dout * ddy
207
    if (ddout) {
208 209 210
      int axis = ctx.Attr<int>("axis");
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
      // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
      if (ddout->numel() > ddx->numel()) {
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX<T>(),
            MulGradDY<T>());

        Tensor ddout_tmp;
        ddout_tmp.mutable_data<T>(ddout->dims(), ctx.GetPlace());

        default_elementwise_mul<DeviceContext, T>(ctx, y, &ddx_safe, ddout);
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, x,
                                                  &ddout_tmp);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
      } else {
        // use dx to save memory, other than alloc tmp tensor
        Tensor* ddout_tmp = dx;

        default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
        // NOTE: in the following ElemwiseGradCompute, for the
        // first output tensor is nullptr, the branch to calculate first
        // output tensor will not be activated, DivGradDx function will not
        // be called and can be ignored, the first branch has little effect
        // on running speed.
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
            MulGradDX<T>(), MulGradDY<T>());
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
        default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
      }
247 248 249 250
    }
  }
};

251 252
}  // namespace operators
}  // namespace paddle