elementwise_mul_op.h 3.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
W
Wu Yi 已提交
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18
#include "paddle/fluid/operators/math/blas.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        MulFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VMUL(x->numel(), x->data<T>(), y->data<T>(),
            z->mutable_data<T>(ctx.GetPlace()));
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
59
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
60
class ElementwiseMulKernel : public framework::OpKernel<T> {
61 62
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
63 64 65
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
66 67

    z->mutable_data<T>(ctx.GetPlace());
68 69 70 71 72
    if (x->numel() == y->numel()) {
      elementwise_mul<DeviceContext, T>(ctx, x, y, z);
    } else {
      default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
    }
G
gongweibao 已提交
73 74
  }
};
75

G
gongweibao 已提交
76
template <typename T>
C
chengduoZH 已提交
77
struct MulGradDX {
C
chengduoZH 已提交
78
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
79 80
};

G
gongweibao 已提交
81
template <typename T>
C
chengduoZH 已提交
82
struct MulGradDY {
C
chengduoZH 已提交
83
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
84
};
C
chengduoZH 已提交
85

Q
QI JUN 已提交
86
template <typename DeviceContext, typename T>
87
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
88 89
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
90
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
91 92 93 94 95
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
96
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
97 98 99
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
100 101
    ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
G
gongweibao 已提交
102 103
  }
};
104 105
}  // namespace operators
}  // namespace paddle