elementwise_mul_op.h 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        MulFunctor<T>(), z);
}
32 33 34 35 36 37
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
38

Q
QI JUN 已提交
39
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
40
class ElementwiseMulKernel : public framework::OpKernel<T> {
41 42
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
43 44 45 46
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
                   "Cannot get input Variable X, variable name = %s",
                   ctx.op().Input("X"));
C
chengduo 已提交
47
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1,
                     "For elementwise_op, if X is Sparse, Y must be scalar.");
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
S
sneaxiy 已提交
66
                   framework::ToTypeName(x_var->Type()));
C
chengduo 已提交
67
    }
C
chengduoZH 已提交
68 69

    z->mutable_data<T>(ctx.GetPlace());
C
chengduo 已提交
70
    if (x.numel() == y->numel()) {
71 72
      SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
      same_dims_mul(ctx, &x, y, z);
73
    } else {
C
chengduo 已提交
74
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
75
    }
G
gongweibao 已提交
76 77
  }
};
78

G
gongweibao 已提交
79
template <typename T>
C
chengduoZH 已提交
80
struct MulGradDX {
C
chengduoZH 已提交
81
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
82 83
};

G
gongweibao 已提交
84
template <typename T>
C
chengduoZH 已提交
85
struct MulGradDY {
C
chengduoZH 已提交
86
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
87
};
C
chengduoZH 已提交
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
114
template <typename DeviceContext, typename T>
115
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
116 117
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
118
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
119 120 121 122 123
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
124
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
125 126 127
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
128 129 130 131 132 133 134
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_mul_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(),
          MulGradDY<T>());
    }
G
gongweibao 已提交
135 136
  }
};
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

160 161
    // dx = dout * ddy
    // dy = dout * ddx
162
    // ddout = ddx * y + x * ddy
163 164 165 166 167 168 169
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
    // (5) dx = dout *ddy
170
    if (ddout) {
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
      // use dx to save memory, other than alloc tmp tensor
      Tensor* ddout_tmp = dx;

      default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
      int axis = ctx.Attr<int>("axis");
      // NOTE: in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
          MulGradDX<T>(), MulGradDY<T>());
      default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
      auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
      ddout_t.device(place) = ddout_t + ddout_tmp_t;
      default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
192 193 194 195
    }
  }
};

196 197
DECLARE_INPLACE_OP_INFERER(ElementwiseMulDoubleGradOpInplace, {"DDX", "DDOut"});

198 199
}  // namespace operators
}  // namespace paddle