parameter_prefetch.cc 11.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wanghuancoder 已提交
15
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17
#include <set>
Q
Qiao Longfei 已提交
18
#include <unordered_map>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20 21
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
W
Wu Yi 已提交
22
#include "paddle/fluid/operators/distributed/distributed.h"
W
wanghuancoder 已提交
23 24 25 26 27 28 29

namespace paddle {
namespace framework {
class ExecutionContext;
class Scope;
}  // namespace framework
}  // namespace paddle
Q
Qiao Longfei 已提交
30 31 32 33 34

namespace paddle {
namespace operators {
namespace distributed {

W
wanghuancoder 已提交
35 36
class RPCClient;

37
using LoDTensor = framework::LoDTensor;
Q
Qiao Longfei 已提交
38 39 40 41
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

Q
Qiao Longfei 已提交
42
static void SplitIdsIntoMultipleVarsBySection(
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    const std::vector<int64_t> &in_ids,
    const std::vector<std::string> &in_varnames, const int tables,
    const int pservers, const bool is_distibuted, framework::Scope *scope,
    std::vector<std::vector<int64_t>> *splited_ids,
    std::vector<std::vector<int64_t>> *origin_ids) {
  PADDLE_ENFORCE_EQ(
      in_varnames.size(), tables,
      platform::errors::OutOfRange(
          "send varnames size: %d not equal table number: %d, internal error",
          in_varnames.size(), tables));

  PADDLE_ENFORCE_LE(
      tables, pservers,
      platform::errors::OutOfRange("table number %d not equal or less than "
                                   "pserver number: %d, internal error",
                                   tables, pservers));
Q
Qiao Longfei 已提交
59 60 61

  auto place = platform::CPUPlace();

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  std::set<int64_t> st(in_ids.begin(), in_ids.end());
  std::vector<int64_t> all_ids;
  all_ids.assign(st.begin(), st.end());

  splited_ids->resize(tables);
  origin_ids->resize(tables);

  if (is_distibuted) {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*splited_ids)[pserver_id].push_back(id);
      (*origin_ids)[pserver_id].push_back(id);
    }
  } else {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*origin_ids)[pserver_id].push_back(id);
      id = id / pservers;
      (*splited_ids)[pserver_id].push_back(id);
    }
  }

  for (size_t i = 0; i < in_varnames.size(); ++i) {
    auto *id_tensor =
        scope->Var(in_varnames[i])->GetMutable<framework::LoDTensor>();

    auto &ids = (*splited_ids)[i];
Q
Qiao Longfei 已提交
89
    if (!ids.empty()) {
90
      auto *id_tensor_data = id_tensor->mutable_data<int64_t>(
Q
Qiao Longfei 已提交
91 92 93 94 95 96
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

97
typedef std::vector<std::pair<std::string, std::string>> TableAndEndpoints;
Q
Qiao Longfei 已提交
98

99
void prefetch_core(
100 101 102 103 104 105 106 107 108 109 110
    const std::vector<int64_t> &ids, const TableAndEndpoints &tables,
    const framework::ExecutionContext &context, const framework::Scope &scope,
    const bool is_distributed,
    std::unordered_map<int64_t, std::vector<float>> *recved_vec_map) {
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  int pservers = context.Attr<int>("pserver_num");

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
C
Chengmo 已提交
111
  auto &actual_ctx = *pool.Get(platform::CPUPlace());
Q
Qiao Longfei 已提交
112

113 114 115 116 117 118 119
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < tables.size(); ++i) {
    in_var_names.push_back("prefetch_send@" + tables[i].second);
    out_var_names.push_back("prefetch_recv@" + tables[i].second);
Q
Qiao Longfei 已提交
120 121
  }

122 123 124 125 126
  std::vector<std::vector<int64_t>> split_ids;
  std::vector<std::vector<int64_t>> origin_ids;
  SplitIdsIntoMultipleVarsBySection(ids, in_var_names, tables.size(), pservers,
                                    is_distributed, local_scope.get(),
                                    &split_ids, &origin_ids);
127 128

  // create output var in local scope
129
  for (auto &name : out_var_names) {
130 131
    local_scope->Var(name)->GetMutable<framework::LoDTensor>();
  }
T
tangwei12 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < in_var_names.size(); i++) {
    if (NeedSend(*local_scope.get(), in_var_names[i])) {
      VLOG(3) << "sending " << in_var_names[i] << " to " << tables[i].second
              << " to get " << out_var_names[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(
          tables[i].second, actual_ctx, *local_scope.get(), in_var_names[i],
          out_var_names[i], tables[i].first));
    } else {
      VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
    }
  }
  for (size_t i = 0; i < rets.size(); i++) {
146 147
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
Q
Qiao Longfei 已提交
148
  }
Q
Qiao Longfei 已提交
149

150 151
  for (size_t o_idx = 0; o_idx < out_var_names.size(); ++o_idx) {
    auto &ids_in_this_section = origin_ids[o_idx];
152

Q
Qiao Longfei 已提交
153
    if (!ids_in_this_section.empty()) {
154 155 156 157
      auto &prefetch_out_var =
          local_scope->Var(out_var_names[o_idx])->Get<framework::LoDTensor>();
      const auto *out_var_data = prefetch_out_var.data<float>();
      auto &dims = prefetch_out_var.dims();
Q
Qiao Longfei 已提交
158 159 160 161 162 163

      PADDLE_ENFORCE_EQ(dims.size(), 2, "");
      PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);

      auto row_numel = dims[1];

164
      for (int64_t i = 0; i < dims[0]; ++i) {
165
        auto origin_id = ids_in_this_section[i];
166
        std::vector<float> vecs(row_numel);
C
Chengmo 已提交
167

168 169
        std::copy_n(out_var_data + i * row_numel, row_numel, vecs.begin());
        (*recved_vec_map)[origin_id] = vecs;
Q
Qiao Longfei 已提交
170
      }
Q
Qiao Longfei 已提交
171
    } else {
172
      VLOG(3) << "ids in this section is empty";
Q
Qiao Longfei 已提交
173 174 175 176
    }
  }
}

177 178 179 180 181 182 183 184 185
void prefetch(const std::string &id_name, const std::string &out_name,
              const std::string &persistable_var_name,
              const bool is_distributed,
              const std::vector<std::string> &table_names,
              const std::vector<std::string> &endpoints,
              const framework::ExecutionContext &context,
              const framework::Scope &scope) {
  prefetchs({id_name}, {out_name}, persistable_var_name, is_distributed,
            table_names, endpoints, context, scope);
186
}
Q
Qiao Longfei 已提交
187

188 189 190 191 192 193 194 195
void prefetchs(const std::vector<std::string> &id_var_names,
               const std::vector<std::string> &out_var_names,
               const std::string &persistable_var_name,
               const bool is_distributed,
               const std::vector<std::string> &table_names,
               const std::vector<std::string> &endpoints,
               const framework::ExecutionContext &context,
               const framework::Scope &scope) {
T
tangwei12 已提交
196
  auto vec_dim_1 = 0;
197 198 199 200 201 202 203 204 205
  auto vec_dim_0 = 0;
  framework::Variable *var = scope.FindVar(persistable_var_name);

  if (var->IsType<SelectedRows>()) {
    vec_dim_1 = var->Get<framework::SelectedRows>().value().dims()[1];
  } else {
    vec_dim_0 = var->Get<framework::LoDTensor>().dims()[0];
    vec_dim_1 = var->Get<framework::LoDTensor>().dims()[1];
  }
T
tangwei12 已提交
206 207 208 209

  PADDLE_ENFORCE_GT(vec_dim_1, 0,
                    platform::errors::InvalidArgument(
                        "lookup table var's dim must gather than 0"));
210 211 212 213

  const auto place =
      scope.FindVar(id_var_names[0])->Get<framework::LoDTensor>().place();

C
Chengmo 已提交
214
  std::vector<std::vector<int64_t>> ids_group;
215
  std::vector<int64_t> ids_union;
C
Chengmo 已提交
216
  std::vector<framework::LoD> ids_lods;
217 218
  TableAndEndpoints tables;

219
  for (auto &id_name : id_var_names) {
C
Chengmo 已提交
220 221 222 223 224 225
    auto &id_tensor = scope.FindVar(id_name)->Get<framework::LoDTensor>();
    std::vector<int64_t> ids;
    TensorToVector(id_tensor, context.device_context(), &ids);
    ids_union.insert(ids_union.end(), ids.begin(), ids.end());
    ids_group.push_back(ids);
    ids_lods.push_back(id_tensor.lod());
Q
Qiao Longfei 已提交
226 227
  }

228 229
  std::unordered_set<int64_t> s(ids_union.begin(), ids_union.end());
  ids_union.assign(s.begin(), s.end());
Q
Qiao Longfei 已提交
230

231 232 233 234 235 236 237 238 239 240 241 242 243
  for (auto &i : ids_union) {
    PADDLE_ENFORCE_GE(
        i, 0, platform::errors::OutOfRange(
                  "each element in embedding should be larger or equal 0"));
    if (!is_distributed) {
      PADDLE_ENFORCE_LT(
          i, vec_dim_0,
          platform::errors::OutOfRange(
              "embedding id must in [0, %d) when is_distributed False",
              vec_dim_0));
    }
  }

244
  for (size_t i = 0; i < table_names.size(); i++) {
245
    tables.push_back(std::make_pair(table_names[i], endpoints[i]));
Q
Qiao Longfei 已提交
246 247
  }

248
  std::unordered_map<int64_t, std::vector<float>> recved_vec_map;
249
  prefetch_core(ids_union, tables, context, scope, is_distributed,
250 251 252 253 254 255
                &recved_vec_map);

  auto padding_idx = distributed::kNoPadding;

  if (context.HasAttr("padding_idx")) {
    padding_idx = context.Attr<int64_t>("padding_idx");
Q
Qiao Longfei 已提交
256
  }
Q
Qiao Longfei 已提交
257

258
  for (size_t i = 0; i < out_var_names.size(); i++) {
C
Chengmo 已提交
259 260
    std::vector<int64_t> ids = ids_group[i];
    auto ids_size = ids.size();
261 262
    auto *out_t =
        scope.FindVar(out_var_names[i])->GetMutable<framework::LoDTensor>();
C
Chengmo 已提交
263 264 265
    out_t->set_lod(ids_lods[i]);
    out_t->Resize(
        framework::make_ddim({static_cast<int64_t>(ids_size), vec_dim_1}));
266
    auto *out_d = out_t->mutable_data<float>(place);
267

C
Chengmo 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    if (platform::is_cpu_place(out_t->place())) {
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          memset(out_d + idx * vec_dim_1, 0, sizeof(float) * vec_dim_1);
        } else {
          std::copy_n(recved_vec_map[id].begin(), vec_dim_1,
                      out_d + idx * vec_dim_1);
        }
      }
    } else {
#ifdef PADDLE_WITH_CUDA
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        auto stream = context.cuda_device_context().stream();
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          platform::GpuMemsetAsync(out_d + idx * vec_dim_1, 0,
                                   sizeof(float) * vec_dim_1, stream);
        } else {
          auto &cpu_place =
              BOOST_GET_CONST(platform::CPUPlace,
                              paddle::platform::CPUDeviceContext().GetPlace());
          auto &gpu_place =
              BOOST_GET_CONST(platform::CUDAPlace, out_t->place());
          memory::Copy(gpu_place, out_d + idx * vec_dim_1, cpu_place,
                       &recved_vec_map[id][0], sizeof(float) * vec_dim_1,
                       stream);
        }
296
      }
C
Chengmo 已提交
297 298 299 300
#else
      PADDLE_ENFORCE(true, platform::errors::PermissionDenied(
                               "Paddle is not compiled with GPU!"));
#endif
301
    }
Q
Qiao Longfei 已提交
302 303 304 305 306 307
  }
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle