parameter_prefetch.cc 7.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

constexpr int64_t kNoPadding = -1;

inline size_t GetSectionIndex(int64_t id,
                              const std::vector<int64_t>& abs_sections) {
  for (size_t i = 1; i < abs_sections.size(); ++i) {
    if (id < abs_sections[i]) {
      return i - 1;
    }
  }
  return abs_sections.size() - 1;
}

inline std::vector<int64_t> ToAbsoluteSection(
    const std::vector<int64_t>& height_sections) {
  std::vector<int64_t> abs_sections;
  abs_sections.resize(height_sections.size());
  abs_sections[0] = 0;
  for (size_t i = 1; i < height_sections.size(); ++i) {
    abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
  }
  return abs_sections;
}

inline std::vector<std::vector<int64_t>> SplitIds(
    const std::string& id_name, const std::vector<int64_t>& height_section,
    framework::Scope* scope) {
Q
Qiao Longfei 已提交
66
  auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
Q
Qiao Longfei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  auto* id_data = id_tensor.data<int64_t>();
  std::set<int64_t> all_ids;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    all_ids.insert(id_data[i]);
  }
  auto abs_sections = ToAbsoluteSection(height_section);
  std::vector<std::vector<int64_t>> splited_ids;
  splited_ids.resize(height_section.size() + 1);
  for (auto& id : all_ids) {
    auto section_index = GetSectionIndex(id, abs_sections);
    splited_ids[section_index].push_back(id - abs_sections[section_index]);
  }
  return splited_ids;
}

inline void SplitIdsIntoMultipleVarsBySection(
    const std::string& id_name, const std::vector<std::string>& in_var_names,
    const std::vector<int64_t>& height_section,
    const std::vector<std::vector<int64_t>>& splited_ids,
    framework::Scope* scope) {
Q
Qiao Longfei 已提交
87
  PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size(), "");
Q
Qiao Longfei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  auto place = platform::CPUPlace();

  for (size_t i = 0; i < in_var_names.size(); ++i) {
    auto* id_tensor =
        scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
    auto& ids = splited_ids[i];
    if (!ids.empty()) {
      auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

Q
Qiao Longfei 已提交
103
inline void MergeMultipleVarsIntoOneBySection(
Q
Qiao Longfei 已提交
104 105 106 107 108
    const std::string& id_name, const std::string& out_name,
    const std::vector<std::string>& out_var_names,
    const std::vector<int64_t>& height_section,
    const std::vector<std::vector<int64_t>>& splited_ids,
    const framework::ExecutionContext& context, framework::Scope* scope) {
Q
can run  
Qiao Longfei 已提交
109
  PADDLE_ENFORCE_EQ(out_var_names.size(), height_section.size(), "");
Q
Qiao Longfei 已提交
110 111 112 113

  auto cpu_place = platform::CPUPlace();

  auto abs_sections = ToAbsoluteSection(height_section);
Q
Qiao Longfei 已提交
114
  auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
Q
Qiao Longfei 已提交
115 116 117 118 119 120
  auto* id_data = id_tensor.data<int64_t>();
  std::unordered_map<int64_t, std::vector<size_t>> id_to_offset;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    id_to_offset[id_data[i]].push_back(i);
  }

Q
Qiao Longfei 已提交
121 122
  auto* out_tensor =
      scope->FindVar(out_name)->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
123 124 125 126 127
  auto* out_tensor_data = out_tensor->mutable_data<float>(context.GetPlace());

  for (size_t section_idx = 0; section_idx < out_var_names.size();
       ++section_idx) {
    auto& ids_in_this_section = splited_ids[section_idx];
Q
Qiao Longfei 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    if (!ids_in_this_section.empty()) {
      auto& prefetch_out_var =
          scope->Var(out_var_names[section_idx])->Get<framework::LoDTensor>();
      const auto* out_var_data = prefetch_out_var.data<float>();
      auto& dims = prefetch_out_var.dims();

      PADDLE_ENFORCE_EQ(dims.size(), 2, "");
      PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);

      auto row_numel = dims[1];

      for (size_t i = 0; i < dims[0]; ++i) {
        auto id = ids_in_this_section[i];
        auto origin_id = id + abs_sections[section_idx];
        auto& offsets = id_to_offset[origin_id];
        for (auto& offset : offsets) {
          // should support GPU tensor
          memory::Copy(cpu_place, out_tensor_data + offset * row_numel,
                       cpu_place, out_var_data + i * row_numel,
                       sizeof(float) * row_numel);
        }
Q
Qiao Longfei 已提交
149
      }
Q
Qiao Longfei 已提交
150 151
    } else {
      VLOG(30) << "ids in this section is empty";
Q
Qiao Longfei 已提交
152 153 154 155 156
    }
  }
}

void prefetch(const std::string& id_name, const std::string& out_name,
Q
Qiao Longfei 已提交
157
              const std::vector<std::string>& table_names,
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
              const std::vector<std::string>& epmap,
              const std::vector<int64_t>& height_sections,
              const framework::ExecutionContext& context) {
  auto& local_scope = context.scope().NewScope();

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& ctx = *pool.Get(context.GetPlace());

  distributed::RPCClient* rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < epmap.size(); ++i) {
    in_var_names.push_back(id_name + "@" + epmap[i]);
    out_var_names.push_back(out_name + "@" + epmap[i]);
  }

  auto splited_ids = SplitIds(id_name, height_sections, &local_scope);
  SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_sections,
                                    splited_ids, &local_scope);

  // create output var in local scope
  for (auto& name : out_var_names) {
    local_scope.Var(name)->GetMutable<framework::LoDTensor>();
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < in_var_names.size(); i++) {
    if (NeedSend(local_scope, in_var_names[i])) {
      VLOG(30) << "sending " << in_var_names[i] << " to " << epmap[i]
               << " to get " << out_var_names[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(
Q
Qiao Longfei 已提交
192
          epmap[i], ctx, local_scope, in_var_names[i], out_var_names[i],
Q
Qiao Longfei 已提交
193
          table_names[i]));
Q
Qiao Longfei 已提交
194 195 196 197
    } else {
      VLOG(30) << "don't send no-initialied variable: " << out_var_names[i];
    }
  }
Q
Qiao Longfei 已提交
198

Q
Qiao Longfei 已提交
199 200 201 202
  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
  }

Q
Qiao Longfei 已提交
203 204 205
  MergeMultipleVarsIntoOneBySection(id_name, out_name, out_var_names,
                                    height_sections, splited_ids, context,
                                    &local_scope);
Q
Qiao Longfei 已提交
206 207 208 209 210 211 212

  context.scope().DeleteScope(&local_scope);
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle