parameter_prefetch.cc 7.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

constexpr int64_t kNoPadding = -1;

inline size_t GetSectionIndex(int64_t id,
                              const std::vector<int64_t>& abs_sections) {
  for (size_t i = 1; i < abs_sections.size(); ++i) {
    if (id < abs_sections[i]) {
      return i - 1;
    }
  }
  return abs_sections.size() - 1;
}

inline std::vector<int64_t> ToAbsoluteSection(
    const std::vector<int64_t>& height_sections) {
  std::vector<int64_t> abs_sections;
  abs_sections.resize(height_sections.size());
  abs_sections[0] = 0;
  for (size_t i = 1; i < height_sections.size(); ++i) {
    abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
  }
  return abs_sections;
}

inline std::vector<std::vector<int64_t>> SplitIds(
    const std::string& id_name, const std::vector<int64_t>& height_section,
    framework::Scope* scope) {
Q
Qiao Longfei 已提交
66
  auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
Q
Qiao Longfei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  auto* id_data = id_tensor.data<int64_t>();
  std::set<int64_t> all_ids;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    all_ids.insert(id_data[i]);
  }
  auto abs_sections = ToAbsoluteSection(height_section);
  std::vector<std::vector<int64_t>> splited_ids;
  splited_ids.resize(height_section.size() + 1);
  for (auto& id : all_ids) {
    auto section_index = GetSectionIndex(id, abs_sections);
    splited_ids[section_index].push_back(id - abs_sections[section_index]);
  }
  return splited_ids;
}

inline void SplitIdsIntoMultipleVarsBySection(
    const std::string& id_name, const std::vector<std::string>& in_var_names,
    const std::vector<int64_t>& height_section,
    const std::vector<std::vector<int64_t>>& splited_ids,
    framework::Scope* scope) {
Q
Qiao Longfei 已提交
87
  PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size(), "");
Q
Qiao Longfei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  auto place = platform::CPUPlace();

  for (size_t i = 0; i < in_var_names.size(); ++i) {
    auto* id_tensor =
        scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
    auto& ids = splited_ids[i];
    if (!ids.empty()) {
      auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

inline void MergeMultipleVarsIntoOnBySection(
    const std::string& id_name, const std::string& out_name,
    const std::vector<std::string>& out_var_names,
    const std::vector<int64_t>& height_section,
    const std::vector<std::vector<int64_t>>& splited_ids,
    const framework::ExecutionContext& context, framework::Scope* scope) {
Q
can run  
Qiao Longfei 已提交
109
  PADDLE_ENFORCE_EQ(out_var_names.size(), height_section.size(), "");
Q
Qiao Longfei 已提交
110 111 112 113

  auto cpu_place = platform::CPUPlace();

  auto abs_sections = ToAbsoluteSection(height_section);
Q
Qiao Longfei 已提交
114
  auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
Q
Qiao Longfei 已提交
115 116 117 118 119 120
  auto* id_data = id_tensor.data<int64_t>();
  std::unordered_map<int64_t, std::vector<size_t>> id_to_offset;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    id_to_offset[id_data[i]].push_back(i);
  }

Q
Qiao Longfei 已提交
121 122
  auto* out_tensor =
      scope->FindVar(out_name)->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  auto* out_tensor_data = out_tensor->mutable_data<float>(context.GetPlace());

  for (size_t section_idx = 0; section_idx < out_var_names.size();
       ++section_idx) {
    auto& ids_in_this_section = splited_ids[section_idx];
    auto& prefetch_out_var =
        scope->Var(out_var_names[section_idx])->Get<framework::LoDTensor>();
    const auto* out_var_data = prefetch_out_var.data<float>();
    auto& dims = prefetch_out_var.dims();

    PADDLE_ENFORCE_EQ(dims.size(), 2, "");
    PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);

    auto row_numel = dims[1];

    for (size_t i = 0; i < dims[0]; ++i) {
      auto id = ids_in_this_section[i];
      auto origin_id = id + abs_sections[section_idx];
      auto& offsets = id_to_offset[origin_id];
      for (auto& offset : offsets) {
        // should support GPU tensor
        memory::Copy(cpu_place, out_tensor_data + offset * row_numel, cpu_place,
                     out_var_data + i * row_numel, sizeof(float) * row_numel);
      }
    }
  }
}

void prefetch(const std::string& id_name, const std::string& out_name,
              const std::string& table_name,
              const std::vector<std::string>& epmap,
              const std::vector<int64_t>& height_sections,
              const framework::ExecutionContext& context) {
  auto& local_scope = context.scope().NewScope();

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& ctx = *pool.Get(context.GetPlace());

  distributed::RPCClient* rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < epmap.size(); ++i) {
    in_var_names.push_back(id_name + "@" + epmap[i]);
    out_var_names.push_back(out_name + "@" + epmap[i]);
  }

  auto splited_ids = SplitIds(id_name, height_sections, &local_scope);
  SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_sections,
                                    splited_ids, &local_scope);

  // create output var in local scope
  for (auto& name : out_var_names) {
    local_scope.Var(name)->GetMutable<framework::LoDTensor>();
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < in_var_names.size(); i++) {
    if (NeedSend(local_scope, in_var_names[i])) {
      VLOG(30) << "sending " << in_var_names[i] << " to " << epmap[i]
               << " to get " << out_var_names[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(
Q
Qiao Longfei 已提交
187
          epmap[i], ctx, local_scope, in_var_names[i], out_var_names[i],
Q
can run  
Qiao Longfei 已提交
188
          table_name + ".block" + std::to_string(i)));
Q
Qiao Longfei 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    } else {
      VLOG(30) << "don't send no-initialied variable: " << out_var_names[i];
    }
  }
  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
  }

  MergeMultipleVarsIntoOnBySection(id_name, out_name, out_var_names,
                                   height_sections, splited_ids, context,
                                   &local_scope);

  context.scope().DeleteScope(&local_scope);
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle