engine.py 31.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict
18
import socket
19 20

import paddle
21
import paddle.utils as utils
22

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.jit import to_static
26
from paddle.metric import Metric
27
from paddle.static import InputSpec
28
from paddle.fluid import core
29
from paddle.fluid import program_guard
30
from paddle.fluid.layers.utils import flatten
31
from paddle.fluid.executor import global_scope, _to_name_str
32
from paddle.fluid.backward import append_backward
33
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.utils import get_logger
38
from paddle.distributed.passes import new_pass, PassContext
39

40 41
from ..collective import _get_global_env
from .cluster import Cluster, get_default_cluster
42 43
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
44 45 46 47 48
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
49
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
50
from .dist_context import DistributedContext, get_default_distributed_context
51 52 53


class Engine:
54

55 56 57 58 59 60
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
61
        self.model = model
62 63
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
64
        self.cluster = cluster
65 66
        if self.cluster is None:
            self.cluster = get_default_cluster()
67
        self.strategy = strategy
68 69
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
70

71
        self._executor = None
72 73 74 75 76
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

77 78
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
79
        self._orig_dist_context = get_default_distributed_context()
80
        self._dist_contexts = {}
81 82
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
83 84 85 86
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
87
        self._planners = {}
88
        self._dygraph_mode = False
89 90 91 92

    def prepare(self,
                optimizer=None,
                loss=None,
93
                gradient_scale=True,
94 95
                metrics=None,
                all_ranks=False):
96 97 98
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
99 100 101 102
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
103
        self._optimizer = optimizer
104 105 106 107 108 109

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
110
        self._loss = loss
111 112 113 114 115 116

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
117
        self._metrics = to_list(metrics)
118
        self._gradient_scale = gradient_scale
119 120 121 122

        self._planned_mode = None
        self._modes = ['train', 'eval', 'predict']

123 124 125 126
        # Build program and do auto parallel process
        for mode in self._modes:
            # Build forward program
            self._build(mode)
127 128 129
        for mode in self._modes:
            # Do the planning process
            self._plan(mode)
130
        for mode in self._modes:
131 132 133 134 135
            # Do the parallel process
            self._parallel(mode, all_ranks)
            # Init comm and startup program
            self._initialize(mode)

136 137
    def _build(self, mode):

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        if _non_static_mode() or self._dygraph_mode:
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

            # build forward main program
            self.static_model = to_static(self.model,
                                          input_spec=self.inputs_spec)
            inputs = self.static_model.forward.inputs
            outputs = self.static_model.forward.outputs
            forward_main_prog = self.static_model.forward.main_program
            forward_startup_prog = self.static_model.forward.concrete_program.startup_program
            self.concrete_program = self.static_model.forward.concrete_program

            # build loss main program
            outputs_spec = []
            outputs_name = []
            for out in outputs:
                outputs_spec.append(InputSpec(out.shape, out.dtype, out.name))
                outputs_name.append(out.name)
            if isinstance(self._loss, paddle.nn.Layer):
                self.static_loss = to_static(self._loss.forward,
                                             input_spec=outputs_spec +
                                             self.labels_spec)
                loss_main_prog = self.static_loss.main_program
            elif callable(self._loss):
                self.static_loss = to_static(self._loss,
                                             input_spec=outputs_spec +
                                             self.labels_spec)
                loss_main_prog = self.static_loss.main_program

            # build startup program
            for param in self.concrete_program.parameters:
                Parameter(name=param.name,
                          desc=param,
                          type=param.type,
                          shape=param.shape,
                          dtype=param.dtype,
                          stop_gradient=param.stop_gradient,
                          block=forward_startup_prog.global_block())

            paddle.enable_static()

            # NOTE: pure program will loss dist_attr
            # feeded_var_names = [var.name for var in inputs]
            # main_prog_0 = main_prog_0._prune_with_input(
            #     feeded_var_names=feeded_var_names, targets=outputs)

            labels = []
            losses = []
            metrics = []
            # concat forward and loss prog
            if mode != 'predict' and self._loss:
                forward_block = forward_main_prog.global_block()
                loss_block = loss_main_prog.global_block()
                for idx, op in enumerate(loss_block.ops):
                    op_desc = forward_block.desc.append_op()
                    op_desc.copy_from(op.desc)
                    for in_name in op.input_arg_names:
                        if in_name in outputs_name:
                            continue
                        in_var = forward_block._clone_variable(
                            loss_block.vars[in_name], force_persistable=False)
                        if loss_block.vars[in_name].is_data:
                            labels.append(in_var)
                    for out_name in op.output_arg_names:
                        out_var = forward_block._clone_variable(
                            loss_block.vars[out_name], force_persistable=False)
                        if idx == len(loss_block.ops) - 1:
                            losses.append(out_var)
                forward_block._sync_with_cpp()
            serial_main_prog = forward_main_prog
            serial_startup_prog = forward_startup_prog
            # update metrics op in program
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))

        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
262
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
263 264 265 266 267 268 269

    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

270 271
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
272 273

    def _parallel(self, mode, all_ranks):
274 275 276
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
277
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
278 279 280 281 282
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
283 284

    def _init_dist_context(self, mode):
285
        # Init dist_context['mode'] with the first planned dist_context
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
303
        # Get the current content from the distributed context
304 305 306 307
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
308 309 310 311
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
312 313
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
314

315 316 317 318
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

            has_recv_by_socket = []
            # This is a magic number and the rank number for training is usually less than 5000
            magic_num = 5000
            genv = _get_global_env()
            cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
            cur_rank_recv_port = int(cur_rank_port) + magic_num
            server_socket = None
            # Large enough for recv rank
            buff_size = 1024
            server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            server_socket.bind((cur_rank_ip, cur_rank_recv_port))
            # The 10 is an empirical value
            server_socket.listen(10)
            client_sockets = {}
334 335 336
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
                if len(process_group.ranks) == 2:
                    index = process_group.ranks.index(self._cur_rank)
                    is_send = True if index == 0 else False
                    if is_send:
                        recv_rank = process_group.ranks[1]
                        recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
                            recv_rank].split(":")
                        connect_port = int(recv_rank_port) + magic_num
                        client_socket = socket.socket(socket.AF_INET,
                                                      socket.SOCK_STREAM)
                        client_socket.connect((recv_rank_ip, connect_port))
                        client_socket.send(str(self._cur_rank).encode('utf-8'))
                        rank = client_socket.recv(buff_size).decode('utf-8')
                        rank = int(rank)
                        if rank != recv_rank:
                            raise ValueError(
                                "Please check comm pair, the recv rank should be {} but got {}."
                                .format(recv_rank, rank))
                        else:
                            print("It is able to instantiate {} as sender now.".
                                  format(process_group.ranks))
                        client_socket.close()
                    else:
                        send_rank = process_group.ranks[0]
                        while True:
                            if send_rank not in has_recv_by_socket:
                                client_socket, recv_addr = server_socket.accept(
                                )
                                rank = int(
                                    client_socket.recv(buff_size).decode())
                                client_sockets[rank] = client_socket
                                has_recv_by_socket.append(rank)
                            else:
                                client_sockets[send_rank].send(
                                    str(self._cur_rank).encode("utf-8"))
                                client_sockets[send_rank].close()
                                print(
                                    "It is able to instantiate {} as recver now."
                                    .format(process_group.ranks))
                                break
377
                process_group.instantiate()
378
            server_socket.close()
379 380 381 382

        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

        if self._dygraph_mode:
            paddle.disable_static()
            main_program = self._dist_main_progs[mode][self._cur_rank]
            for param in self.concrete_program.parameters:
                # create var in scope and share parameters to scope
                if param.name not in main_program.global_block().vars:
                    continue
                # get param_var's dist_attr
                var = main_program.global_block().vars[param.name]
                var_dist_attr = self._dist_contexts[
                    mode].get_tensor_dist_attr_for_program(var)
                dist_attr = {
                    "dims_mapping": var_dist_attr.dims_mapping,
                    "process_shape": var_dist_attr.process_mesh.topology,
                    "process_group": var_dist_attr.process_mesh.processes
                }
                # slice param_value with dist_attr
                # share sliced_param_value with param_tensor in global_scope
                from .converter import Converter
                param_tensor = global_scope().var(param.name).get_tensor()
                sliced_param = Converter.slice_with_dist_attr(
                    param.numpy(), dist_attr)
                shared_tensor = paddle.to_tensor(sliced_param,
                                                 place=self._place)
                param_tensor._share_data_with(
                    shared_tensor.value().get_tensor())
            paddle.enable_static()

412 413
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
414 415 416 417 418 419 420 421 422 423
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
424

425 426 427 428
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
429
            fetches=None,
430 431
            steps_per_epoch=None,
            use_program_cache=False,
432
            return_numpy=True):
433 434 435
        # TODO: callbacks
        # TODO: evaluate after training
        self.mode = 'train'
436
        assert self.mode in self._dist_main_progs, \
437
            "train model is not ready, please call `engine.prepare()` first."
438 439
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
440

441 442
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
443 444
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)

445
        for epoch in range(epochs):
446 447 448 449 450 451 452 453 454 455 456 457 458 459
            train_logs = {"epoch": epoch}
            for step, _ in enumerate(train_dataloader):
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache,
                                          return_numpy=return_numpy)
                train_logs["step"] = step
                # inner fetches
                if fetch_loss:
                    train_logs["train_loss"] = outs[0][0]
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
460
                    train_logs["train_" + fetch_map[user_fetch_list[i]]] = out
461
                self._logger.info(train_logs)
462

463 464 465
    def evaluate(self,
                 eval_data,
                 batch_size=1,
466
                 fetches=None,
467
                 use_program_cache=False,
468
                 return_numpy=True):
469
        self.mode = 'eval'
470
        assert self.mode in self._dist_main_progs, \
471
            "eval model is not ready, please call `engine.prepare()` first."
472
        eval_dataloader = self._create_dataloader(eval_data, batch_size)
473

474 475 476
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
477 478 479 480 481 482 483 484 485 486 487
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
            eval_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
488
                eval_logs["eval_loss"] = outs[0][0]
489 490 491 492 493 494 495 496 497
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
                        eval_logs["eval_" + metric.name()[i]] = res
            # usr fetches
498
            usr_outs = outs[len(inner_fetch):]
499
            usr_fetch_list = fetch_list[len(inner_fetch):]
500
            for i, out in enumerate(usr_outs):
501 502
                eval_logs["eval_" + fetch_map[usr_fetch_list[i]]] = out
            # logger
503
            self._logger.info(eval_logs)
504

505 506 507
    def predict(self,
                test_data,
                batch_size=1,
508
                fetches=None,
509
                use_program_cache=False,
510
                return_numpy=True):
511
        self.mode = 'predict'
512
        assert self.mode in self._dist_main_progs, \
513
            "predict model is not ready, please call `engine.prepare()` first."
514
        test_dataloader = self._create_dataloader(test_data, batch_size)
515

516 517
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
518
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
519 520

        outputs = []
521 522 523 524 525 526 527 528
        for step, _ in enumerate(test_dataloader):
            predict_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
529
                predict_logs["pred_" + fetch_map[fetch_list[i]]] = out
530
            self._logger.info(predict_logs)
531

532
        return outputs
533

534 535 536 537
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
538
                           steps_per_epoch=None):
539 540 541 542
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
543

544
        # NOTE: Get feed_list from dist_program, then insert dataloader op
545 546
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
547 548 549 550 551 552
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
553 554
        dp_world_size, dp_rank = self._get_data_parallel_info(
            feed_list[0], dist_context)
555 556

        # remove the first three ops if multi run fit/evaluate/predict
557
        op_size = len(dist_main_block.ops)
558 559 560 561
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
562 563

        # insert read op at the end of program
564
        places = paddle.static.cuda_places()
565
        with static.program_guard(dist_main_prog, dist_startup_prog):
566
            dataloader = NonIterableGeneratorLoader(
567 568 569 570 571 572
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
573 574 575 576
                data_parallel_world_size=dp_world_size,
                data_parallel_rank=dp_rank)

        # move read op from the end of program to the start of program
577
        new_op_size = len(dist_main_block.ops)
578
        for _ in range(new_op_size - 1, op_size - 1, -1):
579 580 581
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
582 583 584
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
585 586 587 588 589 590 591 592
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

593 594 595 596 597 598 599 600 601 602 603
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
619
        else:
620 621 622 623 624 625 626 627 628 629 630 631 632
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    def _get_data_parallel_info(self, var, dist_context):
        # get data parallel world size and current data parallel rank
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

657 658 659 660 661
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
662 663
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
664 665 666
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
667 668 669 670
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
671 672 673 674 675
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
676 677 678 679 680
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
681

682 683 684 685
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
686

687 688 689 690
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
719 720 721 722

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]