engine.py 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict

import paddle
20 21
import paddle.distributed.auto_parallel as auto

22 23
from paddle import fluid
from paddle.io import Dataset
24
from paddle.metric import Metric
25
from paddle.static import InputSpec
26
from paddle.fluid import core
27
from paddle.fluid import program_guard
28 29
from paddle.fluid.layers.utils import flatten
from paddle.fluid.executor import global_scope
30
from paddle.fluid.backward import append_backward
31 32 33
from paddle.fluid.framework import Operator
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
34
from paddle.distributed import fleet
35
from paddle.distributed.utils import get_logger
36
from paddle.distributed.passes import new_pass, PassContext
37

38
# from .cluster import Cluster, get_default_cluster
39 40
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
41 42 43 44 45 46 47
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
from .process_group import get_all_process_groups, get_world_process_group
from .dist_context import DistributedContext, get_default_distributed_context
48 49 50


class Engine:
51 52 53 54 55 56
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
57
        self.model = model
58 59
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
60
        self.cluster = cluster
61 62
        # if self.cluster is None:
        #     self.cluster = get_default_cluster()
63
        self.strategy = strategy
64 65
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
66

67
        self._executor = None
68 69 70 71 72 73
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

        self._default_strategy = None
74 75
        self._orig_main_prog = fluid.default_main_program()
        self._orig_startup_prog = fluid.default_startup_program()
76
        self._orig_dist_context = get_default_distributed_context()
77
        self._dist_contexts = {}
78 79
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
80 81 82 83
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
84 85 86 87

    def prepare(self,
                optimizer=None,
                loss=None,
88
                gradient_scale=True,
89
                metrics=None,
90
                mode='train',
91
                all_ranks=False):
92 93 94 95
        self._optimizer = optimizer
        # TODO: check loss type
        self._loss = loss
        self._metrics = to_list(metrics)
96
        self._mode = mode
97
        self._gradient_scale = gradient_scale
98 99 100 101 102 103 104 105 106 107 108 109 110 111
        # Build forward program
        self._build(mode)
        # Do the planning process
        planner = Planner(mode, self._dist_contexts[mode])
        planner.plan()
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
        parallelizer = Parallelizer(mode, planner.completer,
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
112 113 114 115 116
        # Get the current content from the distributed context 
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
117 118 119 120
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
121 122
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
123 124
        # Init comm and startup program
        self._initialize(mode)
125

126 127
    def _build(self, mode):
        serial_main_prog = self._serial_main_progs.get(mode, None)
128 129 130
        if serial_main_prog is not None:
            return

131 132
        losses = []
        metrics = []
133 134 135
        serial_main_prog = self._orig_main_prog.clone()
        serial_startup_prog = self._orig_startup_prog.clone()
        with fluid.program_guard(serial_main_prog, serial_startup_prog):
136 137 138 139
            inputs_spec = self.inputs_spec
            labels_spec = self.labels_spec if self.labels_spec else []
            inputs = [s._create_feed_layer() for s in inputs_spec]
            labels = [s._create_feed_layer() for s in labels_spec]
140
            outputs = to_list(self.model(*inputs))
141 142 143
            if mode != "predict" and self._loss:
                losses = to_list(self._loss(*(outputs + labels)))

144
        default_ctx = get_default_distributed_context()
145
        if not default_ctx.has_annotation or self._default_strategy:
146 147 148
            inputs = [self._set_data_parallel(var) for var in inputs]
            labels = [self._set_data_parallel(var) for var in labels]

149 150
        # self._feed_vars[mode] = {"inputs": inputs, "labels": labels}
        feed_vars = {"inputs": inputs, "labels": labels}
151

152 153 154 155 156 157
        # self._fetch_vars[mode] = {
        #     "outputs": flatten(outputs),
        #     "loss": losses,
        #     "metrics": metrics
        # }
        fetch_vars = {
158
            "outputs": flatten(outputs),
159 160 161 162 163
            "loss": losses,
            "metrics": metrics
        }

        self._dist_contexts[mode] = DistributedContext(
164 165
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
166
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
167 168

    def _initialize(self, mode):
169 170 171 172 173 174 175 176
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
177 178 179 180 181 182 183

        # initialize
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
184 185 186 187 188 189 190 191 192 193
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
194

195 196 197 198 199 200
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
            steps_per_epoch=None,
            use_program_cache=False,
201
            return_numpy=True):
202 203 204
        # TODO: callbacks
        # TODO: evaluate after training
        self.mode = 'train'
205 206 207 208
        assert self.mode in self._dist_main_progs, \
            "train model is not ready, please call `engine.prepare(mode='train')` first."
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
209 210

        outputs = []
211 212
        for epoch in range(epochs):
            for step, data in enumerate(train_dataloader):
213 214
                logs, loss = self._train_step(data, use_program_cache,
                                              return_numpy)
215
                outputs.append(loss)
216 217 218 219
                train_logs = {
                    "train_" + name: val
                    for name, val in logs.items()
                }
220
                self._logger.info(train_logs)
221 222
        return outputs

223 224 225 226
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 use_program_cache=False,
227
                 return_numpy=True):
228
        self.mode = 'eval'
229 230 231
        assert self.mode in self._dist_main_progs, \
            "eval model is not ready, please call `engine.prepare(mode='eval')` first."
        eval_dataloader = self._create_dataloader(eval_data, batch_size)
232 233 234 235 236 237 238 239 240

        outputs = []
        for step, data in enumerate(eval_dataloader):
            logs, outs = self._eval_step(data, use_program_cache, return_numpy)
            outputs.append(outs)
            predict_logs = {"eval_" + name: val for name, val in logs.items()}
            self._logger.info(predict_logs)
        return outputs

241 242 243 244
    def predict(self,
                test_data,
                batch_size=1,
                use_program_cache=False,
245
                return_numpy=True):
246
        self.mode = 'predict'
247 248 249
        assert self.mode in self._dist_main_progs, \
            "predict model is not ready, please call `engine.prepare(mode='predict')` first."
        test_dataloader = self._create_dataloader(test_data, batch_size)
250 251 252 253 254 255 256 257 258 259 260 261

        outputs = []
        for step, data in enumerate(test_dataloader):
            logs, outs = self._predict_step(data, use_program_cache,
                                            return_numpy)
            outputs.append(outs)
            predict_logs = {
                "predict_" + name: val
                for name, val in logs.items()
            }
            self._logger.info(predict_logs)
        return outputs
262

263
    def _train_step(self, data, use_program_cache=False, return_numpy=True):
264
        logs = {}
265 266 267
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = self._fetch_vars[self.mode]["loss"][0]
        if fetch_var.name not in dist_main_prog.global_block().vars:
268 269
            loss = self._executor.run(dist_main_prog,
                                      use_program_cache=use_program_cache)
270 271
            logs["loss"] = None
        else:
272
            loss = self._executor.run(dist_main_prog,
273 274 275
                                      fetch_list=to_list(fetch_var),
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
276
            logs["loss"] = loss
277 278
        return logs, loss

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    def _eval_step(self, data, use_program_cache=False, return_numpy=True):
        logs = {}
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = self._fetch_vars[self.mode]["loss"][0]

        if fetch_var.name not in dist_main_prog.global_block().vars:
            outs = self._executor.run(dist_main_prog,
                                      use_program_cache=use_program_cache)
            logs["loss"] = outs
        else:
            outs = self._executor.run(dist_main_prog,
                                      fetch_list=fetch_var,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            logs["loss"] = outs
        return logs, outs

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    def _predict_step(self, data, use_program_cache=False, return_numpy=True):
        logs = {}
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = []
        for var in self._fetch_vars[self.mode]["outputs"]:
            if var.name in dist_main_prog.global_block().vars:
                fetch_var.append(var)

        if fetch_var is []:
            outs = self._executor.run(dist_main_prog,
                                      use_program_cache=use_program_cache)
            logs["pred"] = outs
        else:
            outs = self._executor.run(dist_main_prog,
                                      fetch_list=fetch_var,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            logs["pred"] = outs
        return logs, outs
315

316 317 318 319
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
320
                           steps_per_epoch=None):
321 322 323 324
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
325 326 327 328 329 330 331 332 333 334 335 336

        # get feed_list from dist_program
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
        dp_world_size, dp_rank = self._get_data_parallel_info(feed_list[0],
                                                              dist_context)

        # remove the first three ops if multi run fit/evaluate/predict
337
        op_size = len(dist_main_block.ops)
338 339 340 341
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
342 343

        # insert read op at the end of program
344 345 346
        places = paddle.static.cuda_places()
        with fluid.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = NonIterableGeneratorLoader(
347 348 349 350 351 352
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
353 354 355 356
                data_parallel_world_size=dp_world_size,
                data_parallel_rank=dp_rank)

        # move read op from the end of program to the start of program
357
        new_op_size = len(dist_main_block.ops)
358
        for _ in range(new_op_size - 1, op_size - 1, -1):
359 360 361 362 363 364 365 366 367 368 369 370 371
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type())
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

372 373 374 375 376 377 378 379 380 381 382
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    def _set_data_parallel(self, var):
        if self._nranks == 1:
            self._default_strategy = 'serial'
            auto.shard_tensor(
                var,
                dist_attr={
                    "process_mesh": [0],
                    "dims_mapping": [-1 for _ in range(len(var.shape))]
                })
        else:
            self._default_strategy = 'dp'
            auto.shard_tensor(
                var,
                dist_attr={
                    "process_mesh": list(range(self._nranks)),
                    "dims_mapping":
                    [0] + [-1 for _ in range(len(var.shape) - 1)]
                })

        return var

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    def _get_data_parallel_info(self, var, dist_context):
        # get data parallel world size and current data parallel rank
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
            assert 'train' in self._serial_main_progs, "training model is not ready, please call `engine.prepare(mode='train')` first."
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context)
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog)
452

453 454 455 456
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
457

458 459 460 461
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def metrics(self):
        return self._metrics

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]