downpour_worker.cc 18.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17 18 19 20 21
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

22
void DownpourWorker::Initialize(const TrainerDesc& desc) {
23
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
24
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
25 26 27 28
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
29
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
30 31 32
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
33
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
34 35 36
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
37
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
38 39
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
40
    label_var_name_[table_id] = table.label_var_name();
41 42
  }

D
dongdaxiang 已提交
43
  for (int i = 0; i < param_.dense_table_size(); ++i) {
44 45 46
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
47
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
48 49 50
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
51
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
52 53 54 55 56
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
57
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
58 59
    skip_ops_[i] = param_.skip_ops(i);
  }
60

61 62 63
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

64
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
65
  fetch_config_ = desc.fetch_config();
66
  use_cvm_ = desc.use_cvm();
T
Thunderbrook 已提交
67
  dump_slot_ = desc.dump_slot();
68 69
}

70
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
71
  uint64_t table_id = static_cast<uint64_t>(
72
      param_.program_config(0).pull_sparse_table_id(table_idx));
73

H
heqiaozhi 已提交
74 75 76 77 78 79 80
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
81 82 83
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
84
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
85 86 87
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
88
  size_t global_index = 0;
89
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
90 91
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
92
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
93 94 95
    if (fea_var == nullptr) {
      continue;
    }
96
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
97 98
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
99
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
100
    size_t fea_idx = 0;
101
    // tensor->lod()[0].size() == batch_size + 1
102 103
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
104 105 106 107
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
108 109
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
110 111 112 113 114 115 116 117
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
118
  uint64_t table_id = static_cast<uint64_t>(
119
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
120 121 122 123 124 125 126 127

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
128 129 130 131

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
132
  std::vector<float> init_value(table.fea_dim());
133 134 135 136
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
137 138 139
    if (var == nullptr) {
      continue;
    }
140
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
141
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
142 143 144 145 146 147 148 149 150 151
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
D
dongdaxiang 已提交
152
    for (int index = 0; index < len; ++index) {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      if (use_cvm_) {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
169
               sizeof(float) * table.emb_dim());
170
        fea_idx++;
171 172 173 174 175
      }
    }
  }
}

176 177 178
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
210
  uint64_t total_inst = 0;
211 212
  double op_sum_time = 0;
  std::unordered_map<std::string, double> op_to_time;
213 214 215 216 217 218
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
219
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
220 221 222 223
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
224 225 226
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
227 228 229 230 231 232 233 234 235
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
236
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
237
      timeline.Start();
238 239 240
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
241
      total_time += timeline.ElapsedSec();
242 243 244 245
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
246
      total_time += timeline.ElapsedSec();
247 248 249 250 251 252 253 254 255 256 257 258 259 260
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
261
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
262
        op->Run(*thread_scope_, place_);
263
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
264 265 266 267 268 269
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

270
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
271 272
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
273 274 275 276 277 278 279 280
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
281
        }
282 283 284 285
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
286 287
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
            dump_slot_);
288 289 290
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
291
      }
292 293 294
    }

    if (need_to_push_dense_) {
295
      timeline.Start();
D
dongdaxiang 已提交
296 297
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
298 299 300 301 302
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }
303
      timeline.Pause();
304
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
305
      total_time += timeline.ElapsedSec();
306 307 308 309 310 311 312 313 314
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
315 316
      }

317 318
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
319 320 321
      }
    }

322
    if (need_to_push_sparse_) {
323 324 325
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
326 327 328 329 330 331
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
332

333 334 335
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
336

337 338 339
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
340 341 342
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
343 344
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
345 346 347 348
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
349 350
    }

D
dongdaxiang 已提交
351
    PrintFetchVars();
352
    thread_scope_->DropKids();
D
dongdaxiang 已提交
353
    total_inst += cur_batch;
354 355 356 357 358 359 360 361
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
362 363 364 365 366 367 368 369 370
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
371
        }
372 373 374 375 376 377 378 379 380 381 382
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
383 384
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
385 386 387 388 389 390 391 392 393 394
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
395
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
396 397
      }
    }
D
dongdaxiang 已提交
398
    timeline.Start();
399
  }
400 401
}

402
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
403
  VLOG(3) << "Begin to train files";
404
  platform::SetNumThreads(1);
405
  device_reader_->Start();
406 407
  int batch_cnt = 0;
  int cur_batch;
408
  while ((cur_batch = device_reader_->Next()) > 0) {
409
    // pull sparse here
D
dongdaxiang 已提交
410
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
411 412 413 414
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
415 416 417
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
418 419 420 421 422 423
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
424 425 426
      CollectLabelInfo(i);
      FillSparseValue(i);
    }
D
dongdaxiang 已提交
427
    VLOG(3) << "fill sparse value for all sparse table done.";
428 429 430

    // do computation here
    for (auto& op : ops_) {
431 432 433 434 435 436 437 438 439 440
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
441 442
    }

443 444
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
445 446
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
447 448 449 450 451 452 453 454
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
455
        }
456 457 458
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
459 460
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
            dump_slot_);
H
heqiaozhi 已提交
461
      }
462 463
    }

464
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
465 466
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
467 468 469 470 471 472 473
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }

      VLOG(3) << "push dense gradient done.";
474

475 476 477 478 479
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
480

481 482 483 484 485
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
486 487
      }

488 489 490
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
491 492
    }

493 494 495 496 497 498 499 500 501 502
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
503 504
      }

505 506 507
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
508 509
    }

510
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
511 512
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
513 514 515 516
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
517
    }
518

D
dongdaxiang 已提交
519
    PrintFetchVars();
520 521 522 523 524 525 526
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle