test_tracer.cc 22.9 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <memory>
20
#include <set>
J
Jiabin Yang 已提交
21 22
#include <string>
#include <vector>
23

J
Jiabin Yang 已提交
24
#include "gtest/gtest.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/framework/op_registry.h"
26
#include "paddle/fluid/imperative/basic_engine.h"
J
Jiabin Yang 已提交
27
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/imperative/tracer.h"
29
#include "paddle/fluid/memory/memcpy.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/device_context.h"
31 32 33 34
#include "paddle/phi/core/kernel_registry.h"

PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(add_grad, CPU, ALL_LAYOUT);
35 36
PD_DECLARE_KERNEL(sum, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(sum_grad, CPU, ALL_LAYOUT);
37 38
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_DECLARE_KERNEL(add_grad, GPU, ALL_LAYOUT);
39
PD_DECLARE_KERNEL(sum_grad, GPU, ALL_LAYOUT);
40
#endif
J
Jiabin Yang 已提交
41 42 43 44 45 46 47 48 49 50 51

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;
using var_pair = std::pair<std::string, vb_vector>;

52 53
using ev_vector = std::vector<std::shared_ptr<egr::EagerVariable>>;
using ev_pair = std::pair<std::string, ev_vector>;
J
Jiabin Yang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
TEST(test_tracer, test_trace_op) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
70
  x_in_tensor->Resize(phi::make_ddim(dims1));
J
Jiabin Yang 已提交
71 72 73
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
74
  y_in_tensor->Resize(phi::make_ddim(dims2));
J
Jiabin Yang 已提交
75 76 77 78 79 80 81 82 83 84 85
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
86
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
87 88

#ifndef PADDLE_WITH_XPU
J
Jiabin Yang 已提交
89 90
  ASSERT_THROW(tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map,
                                       platform::XPUPlace(0), true);
91 92 93
               , platform::EnforceNotMet);
#endif

J
Jiabin Yang 已提交
94
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
95
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
J
Jiabin Yang 已提交
96 97 98 99
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

H
hong 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
TEST(test_tracer, test_trace_op_with_backward) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
116
  x_in_tensor->Resize(phi::make_ddim(dims1));
H
hong 已提交
117 118 119
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
120
  y_in_tensor->Resize(phi::make_ddim(dims2));
H
hong 已提交
121 122 123 124 125 126 127 128 129 130 131
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
132
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
H
hong 已提交
133
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
134
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
H
hong 已提交
135 136 137 138
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
139 140 141 142 143 144
TEST(test_tracer, test_track_backward_output) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
145
      new imperative::VarBase(true, "y_in"));
146
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
147 148 149 150 151 152 153 154 155
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
156
  x_in_tensor->Resize(phi::make_ddim(dims1));
J
Jiabin Yang 已提交
157 158 159
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
160
  y_in_tensor->Resize(phi::make_ddim(dims2));
J
Jiabin Yang 已提交
161 162 163 164 165 166 167 168 169 170 171
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
172
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
173 174 175
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
176 177 178 179 180 181 182 183 184 185
}

TEST(test_tracer, test_track_backward_input) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
186
      new imperative::VarBase(true, "vout"));
J
Jiabin Yang 已提交
187
  platform::CPUPlace place;
188
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
189 190 191 192 193 194
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
195
  x_in_tensor->Resize(phi::make_ddim(dims1));
J
Jiabin Yang 已提交
196 197 198
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
199
  y_in_tensor->Resize(phi::make_ddim(dims2));
J
Jiabin Yang 已提交
200 201 202 203 204 205 206 207 208 209 210
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
211
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
212

213 214 215
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
216
}
217
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
218 219 220 221 222
TEST(test_tracer, test_trace_op_with_multi_device_inputs) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
H
hong 已提交
223
  x_in->SetOverridedStopGradient(false);  // force to run backward
224 225
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
H
hong 已提交
226
  y_in->SetOverridedStopGradient(false);
227 228 229 230 231 232
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
H
hong 已提交
233
  std::vector<int64_t> dims2 = {2, 5};
234 235 236

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
237
  x_in_tensor->Resize(phi::make_ddim(dims1));
238 239 240
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
241
  y_in_tensor->Resize(phi::make_ddim(dims2));
242 243 244 245 246 247 248 249 250 251
  auto* mutable_y = y_in_tensor->mutable_data<float>(gpu_place);
  paddle::memory::Copy(gpu_place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size(), 0);
  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
252 253
  tracer.TraceOp<VarBase>("elementwise_add", ins, outs, mul_attr_map, gpu_place,
                          true);
H
hong 已提交
254 255 256 257 258 259 260 261 262

  // run reduce sum
  std::shared_ptr<imperative::VarBase> reduce_sum_out(
      new imperative::VarBase(true, "reduce_sum_out"));
  var_pair reduce_sum_in_pair = var_pair("X", vb_vector(1, vout));
  var_pair reduce_sum_out_pair = var_pair("Out", vb_vector(1, reduce_sum_out));
  imperative::NameVarBaseMap reduce_in = {reduce_sum_in_pair};
  imperative::NameVarBaseMap reduce_out = {reduce_sum_out_pair};
  framework::AttributeMap reduce_attr_map;
J
Jiabin Yang 已提交
263 264
  tracer.TraceOp<VarBase>("reduce_sum", reduce_in, reduce_out, reduce_attr_map,
                          gpu_place, true);
265
  imperative::BasicEngine engine;
266 267 268 269

  std::vector<std::shared_ptr<imperative::VarBase>> tensors{reduce_sum_out};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine.Init(tensors, grad_tensors);
270
  engine.Execute();
H
hong 已提交
271

272 273 274
  framework::LoDTensor rlt;
  framework::TensorCopySync(vout->Var().Get<framework::LoDTensor>(), place,
                            &rlt);
275
  for (int i = 0; i < rlt.numel(); i++) {
H
hong 已提交
276 277 278 279 280 281
    ASSERT_EQ(rlt.data<float>()[i], 4.0);
  }

  framework::LoDTensor out_grad;
  framework::TensorCopySync(vout->GradVar().Get<framework::LoDTensor>(), place,
                            &out_grad);
282
  for (int i = 0; i < out_grad.numel(); ++i) {
H
hong 已提交
283 284 285 286 287 288 289
    ASSERT_EQ(out_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

290
  for (int i = 0; i < x_grad.numel(); ++i) {
H
hong 已提交
291 292 293 294 295 296 297
    ASSERT_EQ(x_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

298
  for (int i = 0; i < y_grad.numel(); ++i) {
H
hong 已提交
299
    ASSERT_EQ(y_grad.data<float>()[i], 1.0);
300 301
  }
}
H
hong 已提交
302

303
#endif
304 305 306 307 308 309

TEST(test_tracer, test_unique_name_generator) {
  // generate two unique names
  imperative::Tracer tracer;
  auto fc_1 = tracer.GenerateUniqueName("fc");
  auto fc_2 = tracer.GenerateUniqueName("fc");
L
Leo Chen 已提交
310 311
  ASSERT_STREQ("fc_0", fc_1.c_str());
  ASSERT_STREQ("fc_1", fc_2.c_str());
312 313
  // use `eager_tmp` as key if not specify it.
  auto tmp_var_2 = tracer.GenerateUniqueName();
314 315 316
  ASSERT_STREQ("dygraph_tmp_2", tmp_var_2.c_str());
  auto tmp_var_3 = tracer.GenerateUniqueName("dygraph_tmp");
  ASSERT_STREQ("dygraph_tmp_3", tmp_var_3.c_str());
317 318
}

319 320 321 322 323 324 325 326 327 328 329 330
TEST(test_tracer, test_current_tracer) {
  // use current_tracer
  auto tracer = std::make_shared<imperative::Tracer>();
  imperative::SetCurrentTracer(tracer);
  auto current_tracer = imperative::GetCurrentTracer();
  ASSERT_EQ(current_tracer, tracer);
}

TEST(test_tracer, test_expected_place) {
  // default expected place is CPUPlace
  imperative::Tracer tracer;
  ASSERT_EQ(platform::is_cpu_place(tracer.ExpectedPlace()), true);
W
WangXi 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  {
#ifdef PADDLE_WITH_CUDA
    // set to CUDAPlace
    platform::CUDAPlace gpu_place(0);
    tracer.SetExpectedPlace(gpu_place);
    ASSERT_EQ(platform::is_gpu_place(tracer.ExpectedPlace()), true);
#endif
  }
  {
#ifdef PADDLE_WITH_XPU
    // set to XPUPlace
    platform::XPUPlace xpu_place(0);
    tracer.SetExpectedPlace(xpu_place);
    ASSERT_EQ(platform::is_xpu_place(tracer.ExpectedPlace()), true);
#endif
  }
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
TEST(test_tracer, test_var_without_grad_var) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  x_in->ClearGradVarBase();
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  x_in->SetOverridedStopGradient(false);
  y_in->SetOverridedStopGradient(false);
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
368
  x_in_tensor->Resize(phi::make_ddim(dims1));
369 370 371
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
372
  y_in_tensor->Resize(phi::make_ddim(dims2));
373 374 375 376 377 378 379 380 381 382 383
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
384
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
385 386 387 388 389 390

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }

391 392 393
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
394

395 396
  std::vector<std::shared_ptr<imperative::VarBase>> tensors{vout};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
397
  imperative::BasicEngine engine;
398
  engine.Init(tensors, grad_tensors);
399
  engine.Execute();
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

  // check the grad
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

419 420 421 422 423 424 425 426 427
template <typename T>
using WeakPtrSet =
    std::set<std::weak_ptr<T>, std::owner_less<std::weak_ptr<T>>>;

static void TestVarOpDestructionMain(const platform::Place& place,
                                     int64_t tensor_size = 10,
                                     size_t loop_num = 10) {
  WeakPtrSet<VariableWrapper> var_wrappers;
  WeakPtrSet<VarBase> var_bases;
428
  WeakPtrSet<GradOpNode> op_bases;
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

  Tracer tracer;

  {
    auto x = std::make_shared<VarBase>("x");
    auto y = std::make_shared<VarBase>("y");

    x->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    y->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    x->SetOverridedStopGradient(false);
    y->SetOverridedStopGradient(true);

    for (size_t i = 0; i < loop_num; ++i) {
      size_t var_wrapper_num = var_wrappers.size();
      size_t var_base_num = var_bases.size();
      size_t op_base_num = op_bases.size();

      auto z = std::make_shared<VarBase>("z_" + std::to_string(i));
J
Jiabin Yang 已提交
455 456 457
      tracer.TraceOp<VarBase>("mul", NameVarBaseMap{{"X", {x}}, {"Y", {y}}},
                              NameVarBaseMap{{"Out", {z}}},
                              framework::AttributeMap{}, place, true);
458

459 460 461
      ASSERT_EQ(z->GradOpNum(), 0UL);
      ASSERT_EQ(z->GradVarBase()->GradOpNum(), 1UL);
      auto new_op = z->GradVarBase()->GradNode();
462

463 464
      ASSERT_EQ(x->GradOpNum(), 0UL);
      ASSERT_EQ(y->GradOpNum(), 0UL);
465

466
      std::unordered_set<std::shared_ptr<GradOpNode>> expected_pending_ops;
467
      if (i == 0) {
468 469
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
470
      } else {
471 472
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 1UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
473

474 475
        if (x->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(x->GradVarBase()->GradNode());
476
        }
477 478 479

        if (y->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(y->GradVarBase()->GradNode());
480 481
        }

482 483
        std::unordered_set<std::shared_ptr<GradOpNode>> actual_pending_ops;
        for (auto& op : new_op->GradPendingNodes()) {
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
          actual_pending_ops.emplace(op);
        }

        ASSERT_TRUE(expected_pending_ops == actual_pending_ops);
        ASSERT_EQ(expected_pending_ops.count(new_op), 0UL);
      }

      var_wrappers.emplace(x->SharedVar());
      var_wrappers.emplace(x->GradVarBase()->SharedVar());
      var_wrappers.emplace(y->SharedVar());
      var_wrappers.emplace(y->GradVarBase()->SharedVar());
      var_wrappers.emplace(z->SharedVar());
      var_wrappers.emplace(z->GradVarBase()->SharedVar());

      var_bases.emplace(x);
      var_bases.emplace(x->GradVarBase());
      var_bases.emplace(y);
      var_bases.emplace(y->GradVarBase());
      var_bases.emplace(z);
      var_bases.emplace(z->GradVarBase());

      for (auto& op : expected_pending_ops) {
        op_bases.emplace(op);
      }

      if (i == 0) {
        ASSERT_EQ(var_wrapper_num, 0UL);
        ASSERT_EQ(var_base_num, 0UL);
        ASSERT_EQ(op_base_num, 0UL);
        ASSERT_EQ(var_wrappers.size(), 6UL);
        ASSERT_EQ(var_bases.size(), 6UL);
        ASSERT_EQ(op_bases.size(), 0UL);
      } else {
        ASSERT_EQ(var_wrappers.size(), var_wrapper_num + 2);
        ASSERT_EQ(var_bases.size(), var_base_num + 2);
        ASSERT_EQ(op_bases.size(), op_base_num + 1);
      }

      x = z;  // recurrent usage
    }
  }

  for (auto& var : var_wrappers) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& var : var_bases) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& op : op_bases) {
    ASSERT_TRUE(op.expired());
  }
}

TEST(test_tracer, test_var_op_destruction) {
  TestVarOpDestructionMain(platform::CPUPlace());
541
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
542 543 544 545
  TestVarOpDestructionMain(platform::CUDAPlace(0));
#endif
}

J
Jiabin Yang 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559
TEST(test_tracer, test_execution_context) {
  auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false);
  framework::Scope scope;
  auto ctx = framework::RuntimeContext({}, {});
  NameVarBaseMap ins = {{"X", {nullptr}}, {"Y", {nullptr}}};
  NameVarBaseMap outs = {{"Out", {nullptr}}};
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(platform::CPUPlace());
  auto dy_ctx = DygraphExecutionContext<VarBase>(
      (*op.get()), scope, *dev_ctx, ctx, ins, outs, framework::AttributeMap{},
      framework::AttributeMap{});
  ASSERT_EQ(dy_ctx.OutputName("Out"), framework::kEmptyVarName);
}

560 561 562 563 564 565 566 567 568 569 570 571 572
TEST(test_tracer, eager_tracer) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<egr::EagerVariable> x_in(new egr::EagerVariable("x_in"));
  std::shared_ptr<egr::EagerVariable> y_in(new egr::EagerVariable("y_in"));
  std::shared_ptr<egr::EagerVariable> vout(new egr::EagerVariable("vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
573
  x_in_tensor->Resize(phi::make_ddim(dims1));
574 575 576
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
577
  y_in_tensor->Resize(phi::make_ddim(dims2));
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  ev_pair x_pair = ev_pair("X", ev_vector(1, x_in));
  ev_pair y_pair = ev_pair("Y", ev_vector(1, y_in));
  ev_pair out_pair = ev_pair("Out", ev_vector(1, vout));
  imperative::NameTensorMap ins = {x_pair, y_pair};
  imperative::NameTensorMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp<egr::EagerVariable>("mul", ins, outs, mul_attr_map, place,
                                     true);

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
598 599 600 601
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
602
USE_OP(mul_grad);
603
USE_OP_ITSELF(reduce_sum);
C
chentianyu03 已提交
604
USE_OP_ITSELF(reduce_sum_grad);
605
USE_OP_ITSELF(elementwise_add);