test_tracer.cc 20.7 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <memory>
20
#include <set>
J
Jiabin Yang 已提交
21 22
#include <string>
#include <vector>
23

J
Jiabin Yang 已提交
24
#include "gtest/gtest.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/framework/op_registry.h"
26
#include "paddle/fluid/imperative/basic_engine.h"
J
Jiabin Yang 已提交
27
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/imperative/tracer.h"
29
#include "paddle/fluid/memory/memcpy.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_tracer, test_trace_op) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
75
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
76 77

#ifndef PADDLE_WITH_XPU
J
Jiabin Yang 已提交
78 79
  ASSERT_THROW(tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map,
                                       platform::XPUPlace(0), true);
80 81 82
               , platform::EnforceNotMet);
#endif

J
Jiabin Yang 已提交
83
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
84
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
J
Jiabin Yang 已提交
85 86 87 88
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

H
hong 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
TEST(test_tracer, test_trace_op_with_backward) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
121
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
H
hong 已提交
122
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
123
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
H
hong 已提交
124 125 126 127
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
128 129 130 131 132 133
TEST(test_tracer, test_track_backward_output) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
134
      new imperative::VarBase(true, "y_in"));
135
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
161
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
162 163 164
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
165 166 167 168 169 170 171 172 173 174
}

TEST(test_tracer, test_track_backward_input) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
175
      new imperative::VarBase(true, "vout"));
J
Jiabin Yang 已提交
176
  platform::CPUPlace place;
177
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
200
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
201

202 203 204
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
205
}
206
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
207 208 209 210 211
TEST(test_tracer, test_trace_op_with_multi_device_inputs) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
H
hong 已提交
212
  x_in->SetOverridedStopGradient(false);  // force to run backward
213 214
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
H
hong 已提交
215
  y_in->SetOverridedStopGradient(false);
216 217 218 219 220 221
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
H
hong 已提交
222
  std::vector<int64_t> dims2 = {2, 5};
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(gpu_place);
  paddle::memory::Copy(gpu_place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size(), 0);
  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
241 242
  tracer.TraceOp<VarBase>("elementwise_add", ins, outs, mul_attr_map, gpu_place,
                          true);
H
hong 已提交
243 244 245 246 247 248 249 250 251

  // run reduce sum
  std::shared_ptr<imperative::VarBase> reduce_sum_out(
      new imperative::VarBase(true, "reduce_sum_out"));
  var_pair reduce_sum_in_pair = var_pair("X", vb_vector(1, vout));
  var_pair reduce_sum_out_pair = var_pair("Out", vb_vector(1, reduce_sum_out));
  imperative::NameVarBaseMap reduce_in = {reduce_sum_in_pair};
  imperative::NameVarBaseMap reduce_out = {reduce_sum_out_pair};
  framework::AttributeMap reduce_attr_map;
J
Jiabin Yang 已提交
252 253
  tracer.TraceOp<VarBase>("reduce_sum", reduce_in, reduce_out, reduce_attr_map,
                          gpu_place, true);
254
  imperative::BasicEngine engine;
255 256 257 258

  std::vector<std::shared_ptr<imperative::VarBase>> tensors{reduce_sum_out};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine.Init(tensors, grad_tensors);
259
  engine.Execute();
H
hong 已提交
260

261 262 263
  framework::LoDTensor rlt;
  framework::TensorCopySync(vout->Var().Get<framework::LoDTensor>(), place,
                            &rlt);
264
  for (int i = 0; i < rlt.numel(); i++) {
H
hong 已提交
265 266 267 268 269 270
    ASSERT_EQ(rlt.data<float>()[i], 4.0);
  }

  framework::LoDTensor out_grad;
  framework::TensorCopySync(vout->GradVar().Get<framework::LoDTensor>(), place,
                            &out_grad);
271
  for (int i = 0; i < out_grad.numel(); ++i) {
H
hong 已提交
272 273 274 275 276 277 278
    ASSERT_EQ(out_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

279
  for (int i = 0; i < x_grad.numel(); ++i) {
H
hong 已提交
280 281 282 283 284 285 286
    ASSERT_EQ(x_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

287
  for (int i = 0; i < y_grad.numel(); ++i) {
H
hong 已提交
288
    ASSERT_EQ(y_grad.data<float>()[i], 1.0);
289 290
  }
}
H
hong 已提交
291

292
#endif
293 294 295 296 297 298

TEST(test_tracer, test_unique_name_generator) {
  // generate two unique names
  imperative::Tracer tracer;
  auto fc_1 = tracer.GenerateUniqueName("fc");
  auto fc_2 = tracer.GenerateUniqueName("fc");
L
Leo Chen 已提交
299 300
  ASSERT_STREQ("fc_0", fc_1.c_str());
  ASSERT_STREQ("fc_1", fc_2.c_str());
301 302
  // use `eager_tmp` as key if not specify it.
  auto tmp_var_2 = tracer.GenerateUniqueName();
303 304 305
  ASSERT_STREQ("dygraph_tmp_2", tmp_var_2.c_str());
  auto tmp_var_3 = tracer.GenerateUniqueName("dygraph_tmp");
  ASSERT_STREQ("dygraph_tmp_3", tmp_var_3.c_str());
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319
TEST(test_tracer, test_current_tracer) {
  // use current_tracer
  auto tracer = std::make_shared<imperative::Tracer>();
  imperative::SetCurrentTracer(tracer);
  auto current_tracer = imperative::GetCurrentTracer();
  ASSERT_EQ(current_tracer, tracer);
}

TEST(test_tracer, test_expected_place) {
  // default expected place is CPUPlace
  imperative::Tracer tracer;
  ASSERT_EQ(platform::is_cpu_place(tracer.ExpectedPlace()), true);
W
WangXi 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  {
#ifdef PADDLE_WITH_CUDA
    // set to CUDAPlace
    platform::CUDAPlace gpu_place(0);
    tracer.SetExpectedPlace(gpu_place);
    ASSERT_EQ(platform::is_gpu_place(tracer.ExpectedPlace()), true);
#endif
  }
  {
#ifdef PADDLE_WITH_XPU
    // set to XPUPlace
    platform::XPUPlace xpu_place(0);
    tracer.SetExpectedPlace(xpu_place);
    ASSERT_EQ(platform::is_xpu_place(tracer.ExpectedPlace()), true);
#endif
  }
336 337
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
TEST(test_tracer, test_var_without_grad_var) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  x_in->ClearGradVarBase();
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  x_in->SetOverridedStopGradient(false);
  y_in->SetOverridedStopGradient(false);
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
373
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
374 375 376 377 378 379

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }

380 381 382
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
383

384 385
  std::vector<std::shared_ptr<imperative::VarBase>> tensors{vout};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
386
  imperative::BasicEngine engine;
387
  engine.Init(tensors, grad_tensors);
388
  engine.Execute();
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

  // check the grad
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

408 409 410 411 412 413 414 415 416
template <typename T>
using WeakPtrSet =
    std::set<std::weak_ptr<T>, std::owner_less<std::weak_ptr<T>>>;

static void TestVarOpDestructionMain(const platform::Place& place,
                                     int64_t tensor_size = 10,
                                     size_t loop_num = 10) {
  WeakPtrSet<VariableWrapper> var_wrappers;
  WeakPtrSet<VarBase> var_bases;
417
  WeakPtrSet<GradOpNode> op_bases;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

  Tracer tracer;

  {
    auto x = std::make_shared<VarBase>("x");
    auto y = std::make_shared<VarBase>("y");

    x->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    y->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    x->SetOverridedStopGradient(false);
    y->SetOverridedStopGradient(true);

    for (size_t i = 0; i < loop_num; ++i) {
      size_t var_wrapper_num = var_wrappers.size();
      size_t var_base_num = var_bases.size();
      size_t op_base_num = op_bases.size();

      auto z = std::make_shared<VarBase>("z_" + std::to_string(i));
J
Jiabin Yang 已提交
444 445 446
      tracer.TraceOp<VarBase>("mul", NameVarBaseMap{{"X", {x}}, {"Y", {y}}},
                              NameVarBaseMap{{"Out", {z}}},
                              framework::AttributeMap{}, place, true);
447

448 449 450
      ASSERT_EQ(z->GradOpNum(), 0UL);
      ASSERT_EQ(z->GradVarBase()->GradOpNum(), 1UL);
      auto new_op = z->GradVarBase()->GradNode();
451

452 453
      ASSERT_EQ(x->GradOpNum(), 0UL);
      ASSERT_EQ(y->GradOpNum(), 0UL);
454

455
      std::unordered_set<std::shared_ptr<GradOpNode>> expected_pending_ops;
456
      if (i == 0) {
457 458
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
459
      } else {
460 461
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 1UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
462

463 464
        if (x->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(x->GradVarBase()->GradNode());
465
        }
466 467 468

        if (y->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(y->GradVarBase()->GradNode());
469 470
        }

471 472
        std::unordered_set<std::shared_ptr<GradOpNode>> actual_pending_ops;
        for (auto& op : new_op->GradPendingNodes()) {
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
          actual_pending_ops.emplace(op);
        }

        ASSERT_TRUE(expected_pending_ops == actual_pending_ops);
        ASSERT_EQ(expected_pending_ops.count(new_op), 0UL);
      }

      var_wrappers.emplace(x->SharedVar());
      var_wrappers.emplace(x->GradVarBase()->SharedVar());
      var_wrappers.emplace(y->SharedVar());
      var_wrappers.emplace(y->GradVarBase()->SharedVar());
      var_wrappers.emplace(z->SharedVar());
      var_wrappers.emplace(z->GradVarBase()->SharedVar());

      var_bases.emplace(x);
      var_bases.emplace(x->GradVarBase());
      var_bases.emplace(y);
      var_bases.emplace(y->GradVarBase());
      var_bases.emplace(z);
      var_bases.emplace(z->GradVarBase());

      for (auto& op : expected_pending_ops) {
        op_bases.emplace(op);
      }

      if (i == 0) {
        ASSERT_EQ(var_wrapper_num, 0UL);
        ASSERT_EQ(var_base_num, 0UL);
        ASSERT_EQ(op_base_num, 0UL);
        ASSERT_EQ(var_wrappers.size(), 6UL);
        ASSERT_EQ(var_bases.size(), 6UL);
        ASSERT_EQ(op_bases.size(), 0UL);
      } else {
        ASSERT_EQ(var_wrappers.size(), var_wrapper_num + 2);
        ASSERT_EQ(var_bases.size(), var_base_num + 2);
        ASSERT_EQ(op_bases.size(), op_base_num + 1);
      }

      x = z;  // recurrent usage
    }
  }

  for (auto& var : var_wrappers) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& var : var_bases) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& op : op_bases) {
    ASSERT_TRUE(op.expired());
  }
}

TEST(test_tracer, test_var_op_destruction) {
  TestVarOpDestructionMain(platform::CPUPlace());
530
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
531 532 533 534
  TestVarOpDestructionMain(platform::CUDAPlace(0));
#endif
}

J
Jiabin Yang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548
TEST(test_tracer, test_execution_context) {
  auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false);
  framework::Scope scope;
  auto ctx = framework::RuntimeContext({}, {});
  NameVarBaseMap ins = {{"X", {nullptr}}, {"Y", {nullptr}}};
  NameVarBaseMap outs = {{"Out", {nullptr}}};
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(platform::CPUPlace());
  auto dy_ctx = DygraphExecutionContext<VarBase>(
      (*op.get()), scope, *dev_ctx, ctx, ins, outs, framework::AttributeMap{},
      framework::AttributeMap{});
  ASSERT_EQ(dy_ctx.OutputName("Out"), framework::kEmptyVarName);
}

J
Jiabin Yang 已提交
549 550 551 552
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
553
USE_OP(mul_grad);
H
hong 已提交
554 555
USE_OP(reduce_sum);
USE_OP(reduce_sum_grad);
556
USE_OP_ITSELF(elementwise_add);