test_tracer.cc 22.7 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <memory>
20
#include <set>
J
Jiabin Yang 已提交
21 22
#include <string>
#include <vector>
23

J
Jiabin Yang 已提交
24
#include "gtest/gtest.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/framework/op_registry.h"
26
#include "paddle/fluid/imperative/basic_engine.h"
J
Jiabin Yang 已提交
27
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/imperative/tracer.h"
29
#include "paddle/fluid/memory/memcpy.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/device_context.h"
31 32 33 34 35 36 37
#include "paddle/phi/core/kernel_registry.h"

PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(add_grad, CPU, ALL_LAYOUT);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_DECLARE_KERNEL(add_grad, GPU, ALL_LAYOUT);
#endif
J
Jiabin Yang 已提交
38 39 40 41 42 43 44 45 46 47 48

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;
using var_pair = std::pair<std::string, vb_vector>;

49 50
using ev_vector = std::vector<std::shared_ptr<egr::EagerVariable>>;
using ev_pair = std::pair<std::string, ev_vector>;
J
Jiabin Yang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
TEST(test_tracer, test_trace_op) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
67
  x_in_tensor->Resize(phi::make_ddim(dims1));
J
Jiabin Yang 已提交
68 69 70
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
71
  y_in_tensor->Resize(phi::make_ddim(dims2));
J
Jiabin Yang 已提交
72 73 74 75 76 77 78 79 80 81 82
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
83
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
84 85

#ifndef PADDLE_WITH_XPU
J
Jiabin Yang 已提交
86 87
  ASSERT_THROW(tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map,
                                       platform::XPUPlace(0), true);
88 89 90
               , platform::EnforceNotMet);
#endif

J
Jiabin Yang 已提交
91
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
92
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
J
Jiabin Yang 已提交
93 94 95 96
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

H
hong 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
TEST(test_tracer, test_trace_op_with_backward) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
113
  x_in_tensor->Resize(phi::make_ddim(dims1));
H
hong 已提交
114 115 116
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
117
  y_in_tensor->Resize(phi::make_ddim(dims2));
H
hong 已提交
118 119 120 121 122 123 124 125 126 127 128
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
129
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
H
hong 已提交
130
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
131
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
H
hong 已提交
132 133 134 135
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
136 137 138 139 140 141
TEST(test_tracer, test_track_backward_output) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
142
      new imperative::VarBase(true, "y_in"));
143
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
144 145 146 147 148 149 150 151 152
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
153
  x_in_tensor->Resize(phi::make_ddim(dims1));
J
Jiabin Yang 已提交
154 155 156
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
157
  y_in_tensor->Resize(phi::make_ddim(dims2));
J
Jiabin Yang 已提交
158 159 160 161 162 163 164 165 166 167 168
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
169
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
170 171 172
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
173 174 175 176 177 178 179 180 181 182
}

TEST(test_tracer, test_track_backward_input) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
183
      new imperative::VarBase(true, "vout"));
J
Jiabin Yang 已提交
184
  platform::CPUPlace place;
185
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
186 187 188 189 190 191
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
192
  x_in_tensor->Resize(phi::make_ddim(dims1));
J
Jiabin Yang 已提交
193 194 195
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
196
  y_in_tensor->Resize(phi::make_ddim(dims2));
J
Jiabin Yang 已提交
197 198 199 200 201 202 203 204 205 206 207
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
208
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
209

210 211 212
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
213
}
214
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
215 216 217 218 219
TEST(test_tracer, test_trace_op_with_multi_device_inputs) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
H
hong 已提交
220
  x_in->SetOverridedStopGradient(false);  // force to run backward
221 222
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
H
hong 已提交
223
  y_in->SetOverridedStopGradient(false);
224 225 226 227 228 229
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
H
hong 已提交
230
  std::vector<int64_t> dims2 = {2, 5};
231 232 233

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
234
  x_in_tensor->Resize(phi::make_ddim(dims1));
235 236 237
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
238
  y_in_tensor->Resize(phi::make_ddim(dims2));
239 240 241 242 243 244 245 246 247 248
  auto* mutable_y = y_in_tensor->mutable_data<float>(gpu_place);
  paddle::memory::Copy(gpu_place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size(), 0);
  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
249 250
  tracer.TraceOp<VarBase>("elementwise_add", ins, outs, mul_attr_map, gpu_place,
                          true);
H
hong 已提交
251 252 253 254 255 256 257 258 259

  // run reduce sum
  std::shared_ptr<imperative::VarBase> reduce_sum_out(
      new imperative::VarBase(true, "reduce_sum_out"));
  var_pair reduce_sum_in_pair = var_pair("X", vb_vector(1, vout));
  var_pair reduce_sum_out_pair = var_pair("Out", vb_vector(1, reduce_sum_out));
  imperative::NameVarBaseMap reduce_in = {reduce_sum_in_pair};
  imperative::NameVarBaseMap reduce_out = {reduce_sum_out_pair};
  framework::AttributeMap reduce_attr_map;
J
Jiabin Yang 已提交
260 261
  tracer.TraceOp<VarBase>("reduce_sum", reduce_in, reduce_out, reduce_attr_map,
                          gpu_place, true);
262
  imperative::BasicEngine engine;
263 264 265 266

  std::vector<std::shared_ptr<imperative::VarBase>> tensors{reduce_sum_out};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine.Init(tensors, grad_tensors);
267
  engine.Execute();
H
hong 已提交
268

269 270 271
  framework::LoDTensor rlt;
  framework::TensorCopySync(vout->Var().Get<framework::LoDTensor>(), place,
                            &rlt);
272
  for (int i = 0; i < rlt.numel(); i++) {
H
hong 已提交
273 274 275 276 277 278
    ASSERT_EQ(rlt.data<float>()[i], 4.0);
  }

  framework::LoDTensor out_grad;
  framework::TensorCopySync(vout->GradVar().Get<framework::LoDTensor>(), place,
                            &out_grad);
279
  for (int i = 0; i < out_grad.numel(); ++i) {
H
hong 已提交
280 281 282 283 284 285 286
    ASSERT_EQ(out_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

287
  for (int i = 0; i < x_grad.numel(); ++i) {
H
hong 已提交
288 289 290 291 292 293 294
    ASSERT_EQ(x_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

295
  for (int i = 0; i < y_grad.numel(); ++i) {
H
hong 已提交
296
    ASSERT_EQ(y_grad.data<float>()[i], 1.0);
297 298
  }
}
H
hong 已提交
299

300
#endif
301 302 303 304 305 306

TEST(test_tracer, test_unique_name_generator) {
  // generate two unique names
  imperative::Tracer tracer;
  auto fc_1 = tracer.GenerateUniqueName("fc");
  auto fc_2 = tracer.GenerateUniqueName("fc");
L
Leo Chen 已提交
307 308
  ASSERT_STREQ("fc_0", fc_1.c_str());
  ASSERT_STREQ("fc_1", fc_2.c_str());
309 310
  // use `eager_tmp` as key if not specify it.
  auto tmp_var_2 = tracer.GenerateUniqueName();
311 312 313
  ASSERT_STREQ("dygraph_tmp_2", tmp_var_2.c_str());
  auto tmp_var_3 = tracer.GenerateUniqueName("dygraph_tmp");
  ASSERT_STREQ("dygraph_tmp_3", tmp_var_3.c_str());
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327
TEST(test_tracer, test_current_tracer) {
  // use current_tracer
  auto tracer = std::make_shared<imperative::Tracer>();
  imperative::SetCurrentTracer(tracer);
  auto current_tracer = imperative::GetCurrentTracer();
  ASSERT_EQ(current_tracer, tracer);
}

TEST(test_tracer, test_expected_place) {
  // default expected place is CPUPlace
  imperative::Tracer tracer;
  ASSERT_EQ(platform::is_cpu_place(tracer.ExpectedPlace()), true);
W
WangXi 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  {
#ifdef PADDLE_WITH_CUDA
    // set to CUDAPlace
    platform::CUDAPlace gpu_place(0);
    tracer.SetExpectedPlace(gpu_place);
    ASSERT_EQ(platform::is_gpu_place(tracer.ExpectedPlace()), true);
#endif
  }
  {
#ifdef PADDLE_WITH_XPU
    // set to XPUPlace
    platform::XPUPlace xpu_place(0);
    tracer.SetExpectedPlace(xpu_place);
    ASSERT_EQ(platform::is_xpu_place(tracer.ExpectedPlace()), true);
#endif
  }
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
TEST(test_tracer, test_var_without_grad_var) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  x_in->ClearGradVarBase();
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  x_in->SetOverridedStopGradient(false);
  y_in->SetOverridedStopGradient(false);
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
365
  x_in_tensor->Resize(phi::make_ddim(dims1));
366 367 368
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
369
  y_in_tensor->Resize(phi::make_ddim(dims2));
370 371 372 373 374 375 376 377 378 379 380
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
381
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
382 383 384 385 386 387

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }

388 389 390
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
391

392 393
  std::vector<std::shared_ptr<imperative::VarBase>> tensors{vout};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
394
  imperative::BasicEngine engine;
395
  engine.Init(tensors, grad_tensors);
396
  engine.Execute();
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

  // check the grad
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

416 417 418 419 420 421 422 423 424
template <typename T>
using WeakPtrSet =
    std::set<std::weak_ptr<T>, std::owner_less<std::weak_ptr<T>>>;

static void TestVarOpDestructionMain(const platform::Place& place,
                                     int64_t tensor_size = 10,
                                     size_t loop_num = 10) {
  WeakPtrSet<VariableWrapper> var_wrappers;
  WeakPtrSet<VarBase> var_bases;
425
  WeakPtrSet<GradOpNode> op_bases;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

  Tracer tracer;

  {
    auto x = std::make_shared<VarBase>("x");
    auto y = std::make_shared<VarBase>("y");

    x->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    y->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    x->SetOverridedStopGradient(false);
    y->SetOverridedStopGradient(true);

    for (size_t i = 0; i < loop_num; ++i) {
      size_t var_wrapper_num = var_wrappers.size();
      size_t var_base_num = var_bases.size();
      size_t op_base_num = op_bases.size();

      auto z = std::make_shared<VarBase>("z_" + std::to_string(i));
J
Jiabin Yang 已提交
452 453 454
      tracer.TraceOp<VarBase>("mul", NameVarBaseMap{{"X", {x}}, {"Y", {y}}},
                              NameVarBaseMap{{"Out", {z}}},
                              framework::AttributeMap{}, place, true);
455

456 457 458
      ASSERT_EQ(z->GradOpNum(), 0UL);
      ASSERT_EQ(z->GradVarBase()->GradOpNum(), 1UL);
      auto new_op = z->GradVarBase()->GradNode();
459

460 461
      ASSERT_EQ(x->GradOpNum(), 0UL);
      ASSERT_EQ(y->GradOpNum(), 0UL);
462

463
      std::unordered_set<std::shared_ptr<GradOpNode>> expected_pending_ops;
464
      if (i == 0) {
465 466
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
467
      } else {
468 469
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 1UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
470

471 472
        if (x->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(x->GradVarBase()->GradNode());
473
        }
474 475 476

        if (y->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(y->GradVarBase()->GradNode());
477 478
        }

479 480
        std::unordered_set<std::shared_ptr<GradOpNode>> actual_pending_ops;
        for (auto& op : new_op->GradPendingNodes()) {
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
          actual_pending_ops.emplace(op);
        }

        ASSERT_TRUE(expected_pending_ops == actual_pending_ops);
        ASSERT_EQ(expected_pending_ops.count(new_op), 0UL);
      }

      var_wrappers.emplace(x->SharedVar());
      var_wrappers.emplace(x->GradVarBase()->SharedVar());
      var_wrappers.emplace(y->SharedVar());
      var_wrappers.emplace(y->GradVarBase()->SharedVar());
      var_wrappers.emplace(z->SharedVar());
      var_wrappers.emplace(z->GradVarBase()->SharedVar());

      var_bases.emplace(x);
      var_bases.emplace(x->GradVarBase());
      var_bases.emplace(y);
      var_bases.emplace(y->GradVarBase());
      var_bases.emplace(z);
      var_bases.emplace(z->GradVarBase());

      for (auto& op : expected_pending_ops) {
        op_bases.emplace(op);
      }

      if (i == 0) {
        ASSERT_EQ(var_wrapper_num, 0UL);
        ASSERT_EQ(var_base_num, 0UL);
        ASSERT_EQ(op_base_num, 0UL);
        ASSERT_EQ(var_wrappers.size(), 6UL);
        ASSERT_EQ(var_bases.size(), 6UL);
        ASSERT_EQ(op_bases.size(), 0UL);
      } else {
        ASSERT_EQ(var_wrappers.size(), var_wrapper_num + 2);
        ASSERT_EQ(var_bases.size(), var_base_num + 2);
        ASSERT_EQ(op_bases.size(), op_base_num + 1);
      }

      x = z;  // recurrent usage
    }
  }

  for (auto& var : var_wrappers) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& var : var_bases) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& op : op_bases) {
    ASSERT_TRUE(op.expired());
  }
}

TEST(test_tracer, test_var_op_destruction) {
  TestVarOpDestructionMain(platform::CPUPlace());
538
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
539 540 541 542
  TestVarOpDestructionMain(platform::CUDAPlace(0));
#endif
}

J
Jiabin Yang 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556
TEST(test_tracer, test_execution_context) {
  auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false);
  framework::Scope scope;
  auto ctx = framework::RuntimeContext({}, {});
  NameVarBaseMap ins = {{"X", {nullptr}}, {"Y", {nullptr}}};
  NameVarBaseMap outs = {{"Out", {nullptr}}};
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(platform::CPUPlace());
  auto dy_ctx = DygraphExecutionContext<VarBase>(
      (*op.get()), scope, *dev_ctx, ctx, ins, outs, framework::AttributeMap{},
      framework::AttributeMap{});
  ASSERT_EQ(dy_ctx.OutputName("Out"), framework::kEmptyVarName);
}

557 558 559 560 561 562 563 564 565 566 567 568 569
TEST(test_tracer, eager_tracer) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<egr::EagerVariable> x_in(new egr::EagerVariable("x_in"));
  std::shared_ptr<egr::EagerVariable> y_in(new egr::EagerVariable("y_in"));
  std::shared_ptr<egr::EagerVariable> vout(new egr::EagerVariable("vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
570
  x_in_tensor->Resize(phi::make_ddim(dims1));
571 572 573
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
574
  y_in_tensor->Resize(phi::make_ddim(dims2));
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  ev_pair x_pair = ev_pair("X", ev_vector(1, x_in));
  ev_pair y_pair = ev_pair("Y", ev_vector(1, y_in));
  ev_pair out_pair = ev_pair("Out", ev_vector(1, vout));
  imperative::NameTensorMap ins = {x_pair, y_pair};
  imperative::NameTensorMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp<egr::EagerVariable>("mul", ins, outs, mul_attr_map, place,
                                     true);

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
595 596 597 598
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
599
USE_OP(mul_grad);
600
USE_OP_ITSELF(reduce_sum);
C
chentianyu03 已提交
601
USE_OP_ITSELF(reduce_sum_grad);
602
USE_OP_ITSELF(elementwise_add);