tester_helper.h 25.1 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size");
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
48 49 50
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
51 52
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
53 54
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
55
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
56
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
57
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
58 59 60
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
L
luotao1 已提交
61

62
DECLARE_bool(profile);
L
luotao1 已提交
63
DECLARE_int32(paddle_num_threads);
64

L
luotao1 已提交
65 66 67
namespace paddle {
namespace inference {

68 69
using paddle::framework::proto::VarType;

70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

83
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
84
  const auto *analysis_config =
85
      reinterpret_cast<const AnalysisConfig *>(config);
86
  if (use_analysis) {
87
    LOG(INFO) << *analysis_config;
88 89
    return;
  }
90
  LOG(INFO) << analysis_config->ToNativeConfig();
91
}
Y
Yan Chunwei 已提交
92

93
// Compare result between two PaddleTensor
L
luotao1 已提交
94
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
95
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
96
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
97
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
98 99
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
100
    auto &ref_out = ref_outputs[i];
101 102
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
103
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
119
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
120 121 122
        }
        break;
      }
123 124 125 126 127 128 129 130
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
131 132 133 134
    }
  }
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
151
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
152 153 154 155 156 157 158 159 160 161 162 163 164 165
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
L
luotao1 已提交
166 167 168 169 170 171 172 173 174
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
175 176 177 178
    }
  }
}

179
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
180
    const PaddlePredictor::Config *config, bool use_analysis = true) {
181
  const auto *analysis_config =
182
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
183
  if (use_analysis) {
184
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
185
  }
186 187
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
188 189
}

190
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
191

192
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
193
                                                   int *num_ops) {
194
  std::unordered_map<std::string, int> res;
195
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
196 197 198 199 200 201
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
202 203 204 205
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
206 207
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
208 209 210 211
      ++num;
    }
  }
  *num_ops = num;
212
  return *fusion_status;
T
Tao Luo 已提交
213 214
}

T
Tao Luo 已提交
215
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
216 217
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
218
                       std::string params_filename = "params",
N
nhzlx 已提交
219 220
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
221 222
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
223 224 225 226 227 228 229 230 231 232 233
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
250
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
251 252 253 254 255 256
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
257 258
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
259
    }
T
Tao Luo 已提交
260 261 262 263
  }
  (*inputs).emplace_back(input_slots);
}

264 265 266 267 268 269 270 271 272 273 274 275
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
276 277 278 279 280 281 282 283 284 285 286
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
287 288
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
L
luotao1 已提交
289 290 291 292 293
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
294

L
luotao1 已提交
295 296
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
297
                      std::vector<std::vector<PaddleTensor>> *outputs,
298 299
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
300 301 302 303 304
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
305
  outputs->resize(1);
L
luotao1 已提交
306 307 308
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
309
    predictor->Run(inputs[0], &(*outputs)[0], batch_size);
L
luotao1 已提交
310 311
  } else {
    predictor->ZeroCopyRun();
312
  }
313
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1, data_type);
L
luotao1 已提交
314 315 316 317
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
318

L
luotao1 已提交
319 320
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
321
                   std::vector<std::vector<PaddleTensor>> *outputs,
322 323
                   int num_threads, int tid,
                   const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
324
  int num_times = FLAGS_repeat;
325
  int iterations = inputs.size();  // process the whole dataset ...
326 327
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
328 329 330 331 332
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
333 334
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
335
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
336
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
337
#endif
L
luotao1 已提交
338 339
  if (!FLAGS_zero_copy) {
    run_timer.tic();
340
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
341
      for (int j = 0; j < num_times; j++) {
342
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
343
      }
L
luotao1 已提交
344
    }
L
luotao1 已提交
345 346
    elapsed_time = run_timer.toc();
  } else {
347
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
348 349 350 351 352 353 354 355
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
356
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
357
  ProfilerStop();
Y
Yiqun Liu 已提交
358
#endif
N
nhzlx 已提交
359

360 361
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
362
            iterations, data_type);
L
luotao1 已提交
363 364 365
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
366 367
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
368
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
369 370 371
  }
}

L
luotao1 已提交
372 373 374
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
375 376
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
    const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
377
  auto predictor = CreateTestPredictor(config, use_analysis);
378
  if (FLAGS_warmup) {
379
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
380
  }
381
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type);
L
luotao1 已提交
382 383
}

L
luotao1 已提交
384
void TestMultiThreadPrediction(
385
    const PaddlePredictor::Config *config,
386
    const std::vector<std::vector<PaddleTensor>> &inputs,
387
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
388
    bool use_analysis = true) {
L
luotao1 已提交
389
  std::vector<std::thread> threads;
L
luotao1 已提交
390 391 392 393 394
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
395

L
luotao1 已提交
396 397 398 399
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
400
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
401
      auto &predictor = predictors[tid];
L
luotao1 已提交
402 403 404
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
405
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
406 407
      }
#endif
408 409 410 411
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
412
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
413 414 415 416 417 418 419
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

420
void TestPrediction(const PaddlePredictor::Config *config,
421
                    const std::vector<std::vector<PaddleTensor>> &inputs,
422 423
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
424
  PrintConfig(config, use_analysis);
L
luotao1 已提交
425
  if (num_threads == 1) {
T
Tao Luo 已提交
426
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
427
  } else {
T
Tao Luo 已提交
428 429
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
430 431 432
  }
}

433 434 435 436
void CompareTopAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref) {
  if (output_slots_quant.size() == 0 || output_slots_ref.size() == 0)
437 438 439
    throw std::invalid_argument(
        "CompareTopAccuracy: output_slots vector is empty.");

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
  float total_accs1_quant{0};
  float total_accs1_ref{0};
  for (size_t i = 0; i < output_slots_quant.size(); ++i) {
    PADDLE_ENFORCE(output_slots_quant[i].size() >= 2UL);
    PADDLE_ENFORCE(output_slots_ref[i].size() >= 2UL);
    // second output: acc_top1
    if (output_slots_quant[i][1].lod.size() > 0 ||
        output_slots_ref[i][1].lod.size() > 0)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output has nonempty LoD.");
    if (output_slots_quant[i][1].dtype != paddle::PaddleDType::FLOAT32 ||
        output_slots_ref[i][1].dtype != paddle::PaddleDType::FLOAT32)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output is of a wrong type.");
    total_accs1_quant +=
        *static_cast<float *>(output_slots_quant[i][1].data.data());
    total_accs1_ref +=
        *static_cast<float *>(output_slots_ref[i][1].data.data());
  }
  float avg_acc1_quant = total_accs1_quant / output_slots_quant.size();
  float avg_acc1_ref = total_accs1_ref / output_slots_ref.size();

  LOG(INFO) << "Avg top1 INT8 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_quant;
  LOG(INFO) << "Avg top1 FP32 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_ref;
466
  LOG(INFO) << "Accepted accuracy drop threshold: " << FLAGS_quantized_accuracy;
467
  CHECK_LE(std::abs(avg_acc1_quant - avg_acc1_ref), FLAGS_quantized_accuracy);
468 469
}

L
luotao1 已提交
470 471 472 473 474 475 476 477 478
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
479 480 481 482
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
483 484 485 486 487 488
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
489
void CompareNativeAndAnalysis(
490
    const PaddlePredictor::Config *config,
491
    const std::vector<std::vector<PaddleTensor>> &inputs) {
492
  PrintConfig(config, true);
493
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
494
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
495
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
496 497 498
  PADDLE_ENFORCE(native_outputs.size() > 0, "Native output is empty.");
  PADDLE_ENFORCE(analysis_outputs.size() > 0, "Analysis output is empty.");
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
499 500
}

501
void CompareQuantizedAndAnalysis(
502
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
503
    const std::vector<std::vector<PaddleTensor>> &inputs) {
504 505 506 507 508 509 510 511 512
  PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size,
                    "Input data has to be packed batch by batch.");
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
513
  TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32);
514 515 516 517 518

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
519 520
  TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                          VarType::INT8);
521 522

  LOG(INFO) << "--- comparing outputs --- ";
523 524 525
  CompareTopAccuracy(quantized_outputs, analysis_outputs);
}

N
nhzlx 已提交
526 527 528 529 530 531 532 533 534 535
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

536
void CompareAnalysisAndZeroCopy(
537
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
538 539 540 541 542 543 544 545 546
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
547 548
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
549 550 551 552 553 554
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
555
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
556 557 558 559 560
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

561 562 563 564 565 566 567
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
639
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
640
                                  [](int a, int b) { return a * b; });
641
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
642 643 644 645 646 647 648
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
649
    if (a.type() == VarType::FP32) {
L
luotao1 已提交
650 651 652 653 654 655 656 657
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
658
    } else if (a.type() == VarType::INT64) {
L
luotao1 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
690 691
}  // namespace inference
}  // namespace paddle