tester_helper.h 19.8 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
48 49
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
50 51
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
52
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
53
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
L
luotao1 已提交
54

55
DECLARE_bool(profile);
L
luotao1 已提交
56
DECLARE_int32(paddle_num_threads);
57

L
luotao1 已提交
58 59 60
namespace paddle {
namespace inference {

61
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
62
  const auto *analysis_config =
63
      reinterpret_cast<const AnalysisConfig *>(config);
64
  if (use_analysis) {
65
    LOG(INFO) << *analysis_config;
66 67
    return;
  }
68
  LOG(INFO) << analysis_config->ToNativeConfig();
69
}
Y
Yan Chunwei 已提交
70

71
// Compare result between two PaddleTensor
L
luotao1 已提交
72
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
73
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
74
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
75
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
76 77
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
78
    auto &ref_out = ref_outputs[i];
79 80
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
81
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
97
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
98 99 100
        }
        break;
      }
101 102 103 104 105 106 107 108
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
109 110 111 112
    }
  }
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
    }
  }
}

148
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
149
    const PaddlePredictor::Config *config, bool use_analysis = true) {
150
  const auto *analysis_config =
151
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
152
  if (use_analysis) {
153
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
154
  }
155 156
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
157 158
}

159
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
160

161
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
162
                                                   int *num_ops) {
163
  std::unordered_map<std::string, int> res;
164
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
165 166 167 168 169 170
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
171 172 173 174
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
175 176
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
177 178 179 180
      ++num;
    }
  }
  *num_ops = num;
181
  return *fusion_status;
T
Tao Luo 已提交
182 183
}

T
Tao Luo 已提交
184
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
185 186
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
187
                       std::string params_filename = "params",
N
nhzlx 已提交
188 189
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
190 191
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
192 193 194 195 196 197 198 199 200 201 202
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
226 227
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
228
    }
T
Tao Luo 已提交
229 230 231 232
  }
  (*inputs).emplace_back(input_slots);
}

233 234 235 236 237 238 239 240 241 242 243 244
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
261

L
luotao1 已提交
262 263 264 265 266 267 268 269 270 271 272 273
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
                      std::vector<PaddleTensor> *outputs, int num_threads,
                      int tid) {
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
274
    predictor->Run(inputs[0], outputs, batch_size);
L
luotao1 已提交
275 276
  } else {
    predictor->ZeroCopyRun();
277
  }
L
luotao1 已提交
278 279 280 281 282
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
283

L
luotao1 已提交
284 285 286 287 288 289 290 291 292
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
                   std::vector<PaddleTensor> *outputs, int num_threads,
                   int tid) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
293
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
294
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
295
#endif
L
luotao1 已提交
296 297 298 299 300
  if (!FLAGS_zero_copy) {
    run_timer.tic();
    for (size_t i = 0; i < inputs.size(); i++) {
      for (int j = 0; j < num_times; j++) {
        predictor->Run(inputs[i], outputs, batch_size);
301
      }
L
luotao1 已提交
302
    }
L
luotao1 已提交
303 304 305 306 307 308 309 310 311 312 313
    elapsed_time = run_timer.toc();
  } else {
    for (size_t i = 0; i < inputs.size(); i++) {
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
314
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
315
  ProfilerStop();
Y
Yiqun Liu 已提交
316
#endif
N
nhzlx 已提交
317

L
luotao1 已提交
318 319 320 321 322 323 324 325
  PrintTime(batch_size, num_times, num_threads, tid, elapsed_time / num_times,
            inputs.size());
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
    benchmark.SetBatchSize(batch_size);
    benchmark.SetLatency(elapsed_time / num_times);
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
326 327 328
  }
}

L
luotao1 已提交
329 330 331 332 333 334 335 336 337
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
  auto predictor = CreateTestPredictor(config, use_analysis);
  PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0);
  PredictionRun(predictor.get(), inputs, outputs, 1, 0);
}

L
luotao1 已提交
338
void TestMultiThreadPrediction(
339
    const PaddlePredictor::Config *config,
340
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
341 342
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
343
  std::vector<std::thread> threads;
L
luotao1 已提交
344 345 346 347 348
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
349

L
luotao1 已提交
350 351 352 353 354
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
L
luotao1 已提交
355
      auto &predictor = predictors[tid];
L
luotao1 已提交
356 357 358
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
359
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
360 361
      }
#endif
L
luotao1 已提交
362 363
      PredictionWarmUp(predictor.get(), inputs, outputs, num_threads, tid);
      PredictionRun(predictor.get(), inputs, outputs, num_threads, tid);
L
luotao1 已提交
364 365 366 367 368 369 370
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

371
void TestPrediction(const PaddlePredictor::Config *config,
372
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
373 374
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
375
  PrintConfig(config, use_analysis);
L
luotao1 已提交
376
  if (num_threads == 1) {
T
Tao Luo 已提交
377
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
378
  } else {
T
Tao Luo 已提交
379 380
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
381 382 383
  }
}

L
luotao1 已提交
384 385 386 387 388 389 390 391 392
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
393 394 395 396
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
397 398 399 400 401 402
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
403
void CompareNativeAndAnalysis(
404
    const PaddlePredictor::Config *config,
405
    const std::vector<std::vector<PaddleTensor>> &inputs) {
406
  PrintConfig(config, true);
T
Tao Luo 已提交
407
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
408
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
409 410 411 412
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

N
nhzlx 已提交
413 414 415 416 417 418 419 420 421 422
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
void CompareAnalysisAndZeroCopy(
    PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
  reinterpret_cast<AnalysisConfig *>(config)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config, true);
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
442
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
443 444 445 446 447
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

L
luotao1 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
529
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
530 531 532 533 534 535 536 537
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
538
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
570 571
}  // namespace inference
}  // namespace paddle