tester_helper.h 22.3 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
48 49
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
50 51
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
52
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
53
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
54
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
L
luotao1 已提交
55

56
DECLARE_bool(profile);
L
luotao1 已提交
57
DECLARE_int32(paddle_num_threads);
58

L
luotao1 已提交
59 60 61
namespace paddle {
namespace inference {

62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

75
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
76
  const auto *analysis_config =
77
      reinterpret_cast<const AnalysisConfig *>(config);
78
  if (use_analysis) {
79
    LOG(INFO) << *analysis_config;
80 81
    return;
  }
82
  LOG(INFO) << analysis_config->ToNativeConfig();
83
}
Y
Yan Chunwei 已提交
84

85
// Compare result between two PaddleTensor
L
luotao1 已提交
86
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
87
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
88
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
89
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
90 91
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
92
    auto &ref_out = ref_outputs[i];
93 94
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
95
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
111
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
112 113 114
        }
        break;
      }
115 116 117 118 119 120 121 122
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
123 124 125 126
    }
  }
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
L
luotao1 已提交
158 159 160 161 162 163 164 165 166
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
167 168 169 170
    }
  }
}

171
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
172
    const PaddlePredictor::Config *config, bool use_analysis = true) {
173
  const auto *analysis_config =
174
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
175
  if (use_analysis) {
176
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
177
  }
178 179
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
180 181
}

182
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
183

184
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
185
                                                   int *num_ops) {
186
  std::unordered_map<std::string, int> res;
187
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
188 189 190 191 192 193
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
194 195 196 197
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
198 199
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
200 201 202 203
      ++num;
    }
  }
  *num_ops = num;
204
  return *fusion_status;
T
Tao Luo 已提交
205 206
}

T
Tao Luo 已提交
207
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
208 209
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
210
                       std::string params_filename = "params",
N
nhzlx 已提交
211 212
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
213 214
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
215 216 217 218 219 220 221 222 223 224 225
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
249 250
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
251
    }
T
Tao Luo 已提交
252 253 254 255
  }
  (*inputs).emplace_back(input_slots);
}

256 257 258 259 260 261 262 263 264 265 266 267
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
268 269 270 271 272 273 274 275 276 277 278
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
279 280
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
L
luotao1 已提交
281 282 283 284 285
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
286

L
luotao1 已提交
287 288 289 290 291 292 293 294 295 296 297 298
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
                      std::vector<PaddleTensor> *outputs, int num_threads,
                      int tid) {
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
299
    predictor->Run(inputs[0], outputs, batch_size);
L
luotao1 已提交
300 301
  } else {
    predictor->ZeroCopyRun();
302
  }
L
luotao1 已提交
303 304 305 306 307
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
308

L
luotao1 已提交
309 310 311 312 313 314 315 316 317
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
                   std::vector<PaddleTensor> *outputs, int num_threads,
                   int tid) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
318
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
319
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
320
#endif
L
luotao1 已提交
321 322 323 324 325
  if (!FLAGS_zero_copy) {
    run_timer.tic();
    for (size_t i = 0; i < inputs.size(); i++) {
      for (int j = 0; j < num_times; j++) {
        predictor->Run(inputs[i], outputs, batch_size);
326
      }
L
luotao1 已提交
327
    }
L
luotao1 已提交
328 329 330 331 332 333 334 335 336 337 338
    elapsed_time = run_timer.toc();
  } else {
    for (size_t i = 0; i < inputs.size(); i++) {
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
339
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
340
  ProfilerStop();
Y
Yiqun Liu 已提交
341
#endif
N
nhzlx 已提交
342

L
luotao1 已提交
343 344 345 346 347 348 349 350
  PrintTime(batch_size, num_times, num_threads, tid, elapsed_time / num_times,
            inputs.size());
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
    benchmark.SetBatchSize(batch_size);
    benchmark.SetLatency(elapsed_time / num_times);
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
351 352 353
  }
}

L
luotao1 已提交
354 355 356 357 358 359 360 361 362
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
  auto predictor = CreateTestPredictor(config, use_analysis);
  PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0);
  PredictionRun(predictor.get(), inputs, outputs, 1, 0);
}

L
luotao1 已提交
363
void TestMultiThreadPrediction(
364
    const PaddlePredictor::Config *config,
365
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
366 367
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
368
  std::vector<std::thread> threads;
L
luotao1 已提交
369 370 371 372 373
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
374

L
luotao1 已提交
375 376 377 378 379
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
L
luotao1 已提交
380
      auto &predictor = predictors[tid];
L
luotao1 已提交
381 382 383
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
384
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
385 386
      }
#endif
L
luotao1 已提交
387 388
      PredictionWarmUp(predictor.get(), inputs, outputs, num_threads, tid);
      PredictionRun(predictor.get(), inputs, outputs, num_threads, tid);
L
luotao1 已提交
389 390 391 392 393 394 395
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

396
void TestPrediction(const PaddlePredictor::Config *config,
397
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
398 399
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
400
  PrintConfig(config, use_analysis);
L
luotao1 已提交
401
  if (num_threads == 1) {
T
Tao Luo 已提交
402
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
403
  } else {
T
Tao Luo 已提交
404 405
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
406 407 408
  }
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
void CompareTopAccuracy(const std::vector<PaddleTensor> &output_slots1,
                        const std::vector<PaddleTensor> &output_slots2) {
  // first output: avg_cost
  if (output_slots1.size() == 0 || output_slots2.size() == 0)
    throw std::invalid_argument(
        "CompareTopAccuracy: output_slots vector is empty.");
  PADDLE_ENFORCE(output_slots1.size() >= 2UL);
  PADDLE_ENFORCE(output_slots2.size() >= 2UL);

  // second output: acc_top1
  if (output_slots1[1].lod.size() > 0 || output_slots2[1].lod.size() > 0)
    throw std::invalid_argument(
        "CompareTopAccuracy: top1 accuracy output has nonempty LoD.");
  if (output_slots1[1].dtype != paddle::PaddleDType::FLOAT32 ||
      output_slots2[1].dtype != paddle::PaddleDType::FLOAT32)
    throw std::invalid_argument(
        "CompareTopAccuracy: top1 accuracy output is of a wrong type.");
  float *top1_quantized = static_cast<float *>(output_slots1[1].data.data());
  float *top1_reference = static_cast<float *>(output_slots2[1].data.data());
  LOG(INFO) << "top1 INT8 accuracy: " << *top1_quantized;
  LOG(INFO) << "top1 FP32 accuracy: " << *top1_reference;
  LOG(INFO) << "Accepted accuracy drop threshold: " << FLAGS_quantized_accuracy;
  CHECK_LE(std::abs(*top1_quantized - *top1_reference),
           FLAGS_quantized_accuracy);
}

L
luotao1 已提交
435 436 437 438 439 440 441 442 443
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
444 445 446 447
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
448 449 450 451 452 453
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
454
void CompareNativeAndAnalysis(
455
    const PaddlePredictor::Config *config,
456
    const std::vector<std::vector<PaddleTensor>> &inputs) {
457
  PrintConfig(config, true);
T
Tao Luo 已提交
458
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
459
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
460 461 462 463
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

464 465 466 467 468 469 470 471 472 473 474
void CompareQuantizedAndAnalysis(
    const PaddlePredictor::Config *config,
    const PaddlePredictor::Config *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  PrintConfig(config, true);
  std::vector<PaddleTensor> analysis_outputs, quantized_outputs;
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  TestOneThreadPrediction(qconfig, inputs, &quantized_outputs, true);
  CompareTopAccuracy(quantized_outputs, analysis_outputs);
}

N
nhzlx 已提交
475 476 477 478 479 480 481 482 483 484
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
void CompareAnalysisAndZeroCopy(
    PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
  reinterpret_cast<AnalysisConfig *>(config)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config, true);
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
504
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
505 506 507 508 509
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

L
luotao1 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
591
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
592 593 594 595 596 597 598 599
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
600
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
632 633
}  // namespace inference
}  // namespace paddle