margin_rank_loss_op.cc 5.0 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/margin_rank_loss_op.h"

namespace paddle {
namespace operators {

class MarginRankLossOp : public framework::OperatorWithKernel {
 public:
22
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
23 24

 protected:
Y
Yibing Liu 已提交
25
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
26
    // input check
27 28 29 30 31 32 33 34 35 36 37 38 39
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto label_dims = ctx->GetInputDim("Label");
    auto x1_dims = ctx->GetInputDim("X1");
    auto x2_dims = ctx->GetInputDim("X2");
    PADDLE_ENFORCE(
        (label_dims == x1_dims) && (x1_dims == x2_dims) &&
            (label_dims.size() == 2) && (label_dims[1] == 1),
        "All inputs must be 2-D tensor with shape [batch_size x 1].");
    ctx->SetOutputDim("Activated", label_dims);
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
40 41 42
  }
};

43
template <typename T>
Y
Yibing Liu 已提交
44 45 46 47 48
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MarginRankLossOpMaker(framework::OpProto *proto,
                        framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
49
    AddInput("X1",
Y
Yibing Liu 已提交
50 51
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "one item X1 to be ranked, from pairwise ranking model.");
52
    AddInput("X2",
Y
Yibing Liu 已提交
53 54
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "another item X2 to be ranked, from pairwise ranking model.");
55
    AddInput("Label",
56 57 58 59 60
             "(2-D tensor with shape [batch_size x 1]) "
             "The label indicating X1 ranked higher than X2 or not, "
             "can only be +1 or -1.");
    AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
        .SetDefault(static_cast<T>(0));
Y
Yibing Liu 已提交
61
    AddOutput("Activated",
62 63
              "(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
              "to indicate whether each element of Output(Out) is activated.")
Y
Yibing Liu 已提交
64
        .AsIntermediate();
65
    AddOutput("Out",
Y
Yibing Liu 已提交
66
              "(2-D tensor with shape [batch_size x 1]) "
67
              "The output loss of MarginRankLoss operator.");
68 69
    AddComment(R"DOC(

Y
Yibing Liu 已提交
70 71 72 73
MarginRankLoss operator measures the loss given a pair of training sample
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1` 
indicating X1 is ranked higher than `X2`, otherwise `Label = -1`. The loss 
turns out
74

Y
Yibing Liu 已提交
75
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin).
Y
Yibing Liu 已提交
76

77
The attribute `margin` involved here helps make the predictions more robust.
Y
Yibing Liu 已提交
78 79
Denote the item ranked higher as the positive sample, otherwise the negative 
sample. If the score of the two samples satisfies 
Y
Yibing Liu 已提交
80 81 82

positive sample - negative sample < margin,

Y
Yibing Liu 已提交
83 84
the pair of samples will contribute to the final loss, which will backpropogate 
and train the ranking model to enlarge the difference of the two score.
85 86 87

For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
Y
Yibing Liu 已提交
88 89 90 91 92 93 94

)DOC");
  }
};

class MarginRankLossGradOp : public framework::OperatorWithKernel {
 public:
95
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
96 97

 protected:
Y
Yibing Liu 已提交
98
  void InferShape(framework::InferShapeContext *ctx) const override {
99 100 101 102 103 104 105 106 107 108
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Activated"),
                   "Intermediate(Activated) shouldn't be null.");
    auto dims = ctx->GetInputDim("Label");
    ctx->SetOutputDim(framework::GradVarName("X1"), dims);
    ctx->SetOutputDim(framework::GradVarName("X2"), dims);
Y
Yibing Liu 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
            ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
            ops::MarginRankLossGradOp);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss,
    ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss_grad,
    ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);