提交 79c2d90a 编写于 作者: Y Yibing Liu

add margin_rank_loss_op

上级 44002846
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/margin_rank_loss_op.h"
namespace paddle {
namespace operators {
class MarginRankLossOp : public framework::OperatorWithKernel {
public:
MarginRankLossOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
// input check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input(Label) shouldn't be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null");
auto label_dims = ctx.Input<framework::Tensor>("Label")->dims();
auto x1_dims = ctx.Input<framework::Tensor>("X1")->dims();
auto x2_dims = ctx.Input<framework::Tensor>("X2")->dims();
PADDLE_ENFORCE((label_dims.size() == 1) && (x1_dims.size() == 1) &&
(x2_dims.size() == 1),
"The rank of all inputs must be 1.");
PADDLE_ENFORCE((label_dims == x1_dims) && (x1_dims == x2_dims),
"All inputs must have the same size");
ctx.Output<framework::LoDTensor>("Out")->Resize(label_dims);
ctx.Output<framework::LoDTensor>("Activated")->Resize(label_dims);
}
};
template <typename AttrType>
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MarginRankLossOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Label", "The label indicating X1 ranked higher than X2 or not.");
AddInput("X1", "The first input of MarginRankLossOp.");
AddInput("X2", "The second input of MarginRankLossOp");
AddAttr<AttrType>("margin", "Margin for MarginRankLossOp").SetDefault(0);
AddOutput("Out", "The output loss of MarginRankLoss operator");
AddOutput("Activated",
"Intermediate tensor to indicate "
"whether Output(Out) is activated")
.AsIntermediate();
AddComment(R"DOC(MarginRankLoss operator
loss(x1, x2, y) = max(0, -label * (x1-x2) + margin)
)DOC");
}
};
class MarginRankLossGradOp : public framework::OperatorWithKernel {
public:
MarginRankLossGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input(Label) shouldn't be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Activated"),
"Intermediate(Activated) shouldn't be null.");
auto dims = ctx.Input<framework::Tensor>("X1")->dims();
auto *x1_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
auto *x2_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
if (x1_grad) {
x1_grad->Resize(dims);
}
if (x2_grad) {
x2_grad->Resize(dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
ops::MarginRankLossGradOp);
REGISTER_OP_CPU_KERNEL(
margin_rank_loss,
ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
margin_rank_loss_grad,
ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/margin_rank_loss_op.h"
REGISTER_OP_GPU_KERNEL(
margin_rank_loss,
paddle::operators::MarginRankLossKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(margin_rank_loss_grad,
paddle::operators::MarginRankLossGradKernel<
paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename T>
struct ReLU {
HOSTDEVICE T operator()(const T& val) const {
if (val < 0) {
return static_cast<T>(0);
} else {
return val;
}
}
};
template <typename T>
struct Heaviside {
HOSTDEVICE T operator()(const T& val) const {
if (val > 0) {
return static_cast<T>(1);
} else {
return static_cast<T>(0);
}
}
};
template <typename Place, typename T, typename AttrType = T>
class MarginRankLossKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out_t = ctx.Output<framework::LoDTensor>("Out");
auto* act_t = ctx.Output<framework::LoDTensor>("Activated");
auto* label_t = ctx.Input<framework::Tensor>("Label");
auto* x1_t = ctx.Input<framework::Tensor>("X1");
auto* x2_t = ctx.Input<framework::Tensor>("X2");
out_t->mutable_data<T>(ctx.GetPlace());
act_t->mutable_data<T>(ctx.GetPlace());
auto margin = static_cast<T>(ctx.Attr<AttrType>("margin"));
auto out = framework::EigenVector<T>::Flatten(*out_t);
auto act = framework::EigenVector<T>::Flatten(*act_t);
auto label = framework::EigenVector<T>::Flatten(*label_t);
auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
auto x2 = framework::EigenVector<T>::Flatten(*x2_t);
auto& dev = ctx.GetEigenDevice<Place>();
act.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(Heaviside<T>());
out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
}
};
template <typename Place, typename T>
class MarginRankLossGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_x1_t =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
auto* d_x2_t =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
auto* act_t = ctx.Output<framework::LoDTensor>("Activated");
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* label_t = ctx.Input<framework::Tensor>("Label");
auto& dev = ctx.GetEigenDevice<Place>();
auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
auto act = framework::EigenVector<T>::Flatten(*act_t);
auto label = framework::EigenVector<T>::Flatten(*label_t);
// compute d_x1
if (d_x1_t) {
d_x1_t->mutable_data<T>(ctx.GetPlace());
auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
d_x1.device(dev) = -d_out * act * label;
}
// compute d_x2
if (d_x2_t) {
d_x2_t->mutable_data<T>(ctx.GetPlace());
auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
d_x2.device(dev) = d_out * act * label;
}
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class TestMarginRankLossOp(OpTest):
def setUp(self):
self.op_type = "margin_rank_loss"
batch_size = 5
margin = 0.1
# labels_{i} = {0, 1.0} or {0, 0.5, 1.0}
label = np.random.randint(0, 2, size=(batch_size, )).astype("float32")
x1 = np.random.random((batch_size, )).astype("float32")
x2 = np.random.random((batch_size, )).astype("float32")
# loss = max(0, -label * (x1 - x2) + margin)
loss = [
max(0, -label[i] * (x1[i] - x2[i]) + margin)
for i in range(batch_size)
]
self.attrs = {'margin': margin}
self.inputs = {'Label': label, 'X1': x1, 'X2': x2}
self.outputs = {'Out': loss}
def test_check_output(self):
self.check_output()
"""
def test_check_grad(self):
self.check_grad(["X1", "X2"], "Out")
def test_check_grad_ignore_x1(self):
self.check_grad(["X2"], "Out", no_grad_set=set('X1'))
def test_check_grad_ignore_x2(self):
self.check_grad(["X1"], "Out", no_grad_set=set('X2'))
"""
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册