margin_rank_loss_op.cc 4.5 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/margin_rank_loss_op.h"

namespace paddle {
namespace operators {

class MarginRankLossOp : public framework::OperatorWithKernel {
 public:
22
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
23 24 25 26 27 28 29 30 31 32 33

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    // input check
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) shouldn't be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null");
    auto label_dims = ctx.Input<framework::Tensor>("Label")->dims();
    auto x1_dims = ctx.Input<framework::Tensor>("X1")->dims();
    auto x2_dims = ctx.Input<framework::Tensor>("X2")->dims();
34 35 36
    PADDLE_ENFORCE((label_dims == x1_dims) && (x1_dims == x2_dims) &&
                       (label_dims.size() == 2) && (label_dims[1] == 1),
                   "All inputs must be vector with the same size");
Y
Yibing Liu 已提交
37
    ctx.Output<framework::LoDTensor>("Activated")->Resize(label_dims);
38
    ctx.Output<framework::LoDTensor>("Out")->Resize(label_dims);
Y
Yibing Liu 已提交
39 40 41 42 43 44 45 46 47
  }
};

template <typename AttrType>
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MarginRankLossOpMaker(framework::OpProto *proto,
                        framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
48 49
    AddInput("X1", "The first variable to be ranked, row vector.");
    AddInput("X2", "The second variable to be ranked, row vector.");
50 51 52 53 54
    AddInput("Label",
             "The label indicating X1 ranked higher than X2 "
             "or not, row vector.");
    AddAttr<AttrType>("margin", "Margin for MarginRankLossOp, scalar.")
        .SetDefault(0);
Y
Yibing Liu 已提交
55
    AddOutput("Activated",
56
              "Intermediate tensor to indicate whether each element of "
57
              "Output(Out) is activated.")
Y
Yibing Liu 已提交
58
        .AsIntermediate();
59 60 61 62
    AddOutput("Out", "The output loss of MarginRankLoss operator");
    AddComment(R"DOC(

MarginRankLoss operator measures the loss given a pair of input {`X1`, `X2`}
63 64
and the `Label` with attribute `margin`, where `Label = 1` indicating X1 is
ranked higher than `X2`, otherwise `Label = -1`. The loss turns out
65

66
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin)
Y
Yibing Liu 已提交
67

68
For batch input, `X1`, `X2` and `Label` all have the same size batch_size x 1.
Y
Yibing Liu 已提交
69 70 71 72 73 74 75

)DOC");
  }
};

class MarginRankLossGradOp : public framework::OperatorWithKernel {
 public:
76
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Activated"),
                            "Intermediate(Activated) shouldn't be null.");
    auto dims = ctx.Input<framework::Tensor>("X1")->dims();
    auto *x1_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
    auto *x2_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
    if (x1_grad) {
      x1_grad->Resize(dims);
    }
    if (x2_grad) {
      x2_grad->Resize(dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
            ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
            ops::MarginRankLossGradOp);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss,
    ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss_grad,
    ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);