op_test.py 53.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import time
24
import itertools
Y
Yu Yang 已提交
25
import collections
M
minqiyang 已提交
26
from collections import defaultdict
27 28 29

import paddle.fluid as fluid
import paddle.fluid.core as core
30 31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
33
from paddle.fluid.framework import Program, OpProtoHolder, Variable
34
from testsuite import create_op, set_input, append_input_output, append_loss_ops
35
from paddle.fluid import unique_name
36 37


38 39 40 41
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
42
    for i in six.moves.xrange(len(prob)):
43 44 45 46
        prob[i] /= prob_sum[i]
    return prob


47 48
def get_numeric_gradient(place,
                         scope,
49 50 51
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
52
                         output_names,
53
                         delta=0.005,
C
chengduo 已提交
54
                         in_place=False):
Y
Yu Yang 已提交
55
    # FIXME: change this method by compile time concepts
56
    set_input(scope, op, inputs, place)
57 58

    def product(dim):
M
minqiyang 已提交
59
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
60 61

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
62 63
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
64
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
65
        tensor_to_check_dtype = np.float32
66
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
67
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
68 69 70 71
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
72 73 74 75
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
76 77 78 79 80 81 82 83 84
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

85 86 87
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
88 89 90 91 92
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
93
            return tensor._get_float_element(i)
94
        else:
Y
yuyang18 已提交
95
            return tensor._get_double_element(i)
96 97

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
98 99 100 101 102
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
103
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
104 105
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
106
            tensor._set_float_element(i, e)
107
        else:
Y
yuyang18 已提交
108
            tensor._set_double_element(i, e)
109

110 111
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
112
    for i in six.moves.xrange(tensor_size):
113
        if in_place:
114
            set_input(scope, op, inputs, place)
115 116

        # get one input element throw it's index i.
117
        origin = __get_elem__(tensor_to_check, i)
118 119
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
120
        __set_elem__(tensor_to_check, i, x_pos)
121 122 123
        y_pos = get_output()

        if in_place:
124
            set_input(scope, op, inputs, place)
125 126

        x_neg = origin - delta
127
        __set_elem__(tensor_to_check, i, x_neg)
128 129
        y_neg = get_output()

130
        __set_elem__(tensor_to_check, i, origin)
131 132
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
133
    return gradient_flat.reshape(tensor_to_check.shape())
134 135 136


class OpTest(unittest.TestCase):
137 138 139 140 141
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
142 143 144
        cls.call_once = False
        cls.dtype = "float32"
        cls.outputs = {}
145 146 147 148 149 150

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
151
        """Restore random seeds"""
152 153 154
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

155 156 157 158 159 160 161 162 163 164
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def infer_dtype(numpy_dict):
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
M
minqiyang 已提交
165
            for var_name, var_value in six.iteritems(numpy_dict):
166 167 168 169 170 171 172 173 174 175 176 177 178 179
                if isinstance(var_value, (np.ndarray, np.generic)):
                    self.try_call_once(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):
                    # the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
                    if len(var_value) > 1 and isinstance(var_value[1], (
                            np.ndarray, np.generic)):
                        instance = var_value[1]
                        self.try_call_once(instance[1].dtype)
                else:
                    self.try_call_once("float32")

        infer_dtype(inputs)
        infer_dtype(outputs)

Y
Yang Yang(Tony) 已提交
180 181 182 183 184 185
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
186
                    if isinstance(np_value, tuple):
187
                        tensor.set(np_value[0], place)
188
                        tensor.set_recursive_sequence_lengths(np_value[1])
189
                    else:
190
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
191 192 193 194
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
195
                    tensor.set(self.inputs[var_name][0], place)
196 197
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
198
                else:
199
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
200 201 202 203
                feed_map[var_name] = tensor

        return feed_map

204
    def _append_ops(self, block):
Y
Yang Yang(Tony) 已提交
205
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
206 207 208 209 210 211
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
212 213 214 215 216 217 218 219 220

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
221 222 223 224 225
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
226
        # infer variable type and infer shape in compile-time 
Q
QI JUN 已提交
227 228
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
229

230 231
        return op

232 233
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
234
        for name, value in six.iteritems(numpy_inputs):
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
254 255 256 257
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
258
            v = fluid.dygraph.base.to_variable(value=data)
M
minqiyang 已提交
259 260 261
            v._ivar.value().get_tensor().set_recursive_sequence_lengths(lod)
            return v
        else:
L
lujun 已提交
262
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
                    v._ivar.value().get_tensor().set_recursive_sequence_lengths(
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
342 343
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
344 345
            block = fluid.default_main_program().global_block()

346
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
347

348 349 350
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
351 352

            # prepare output variable
353 354 355 356 357 358 359 360 361
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
362 363 364 365
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
366
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
367
            return outputs
368

369 370 371 372 373 374
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
375
                     for_inplace_test=None):
376 377
        program = Program()
        block = program.global_block()
378
        op = self._append_ops(block)
379 380 381 382 383

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

384
        if for_inplace_test:
385 386 387 388
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
389 390
            for out_name in op.output_arg_names:
                var = block.var(out_name)
391 392
                if 0 in var.shape:
                    var.persistable = True
393
        original_program = program
394 395
        if parallel:
            use_cuda = False
396
            if isinstance(place, fluid.CUDAPlace):
397
                use_cuda = True
398 399 400
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
401 402 403 404
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
405
            for var_name, var in six.iteritems(outputs):
406 407
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
408 409
                if isinstance(var, list):
                    for v in var:
410
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
411
                else:
412
                    fetch_list.append(var.name)
413 414 415 416
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
417 418 419 420 421 422 423 424 425

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

426
        executor = Executor(place)
427 428 429 430
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
431 432
        self.op = op
        self.program = original_program
433 434 435 436
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
                        np.array(expect_outs[i]),
                        np.array(actual_outs[i]),
                        atol=inplace_atol),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__)
            else:
                self.assertTrue(
                    np.array_equal(
                        np.array(expect_outs[i]), np.array(actual_outs[i])),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__ + '\n')

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op. 

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op. 

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
        
        Args:
            op_desc (OpDesc): The op_desc of current op. 
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op. 
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
            
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc 
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
        """Chech the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
        
        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
621 622 623 624 625 626 627 628 629 630
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
631
        # compare expect_outs and actual_outs
632 633 634 635 636 637
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
661
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
662
                                                                  set(), [])
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
        """Chech the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn/ngraph
                # skip op that use_mkldnn and use_ngraph currently
                flags_use_mkldnn = fluid.core.get_flags_use_mkldnn()
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                use_ngraph = fluid.core.is_compiled_with_ngraph(
                ) and fluid.core.get_flags_use_ngraph()
                if use_ngraph:
                    warnings.warn(
                        "check inplace_grad for ops using ngraph is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
778
                else:
779 780
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
781

782 783 784 785
    def check_output_with_place(self,
                                place,
                                atol,
                                no_check_set=None,
M
minqiyang 已提交
786
                                equal_nan=False,
787
                                check_dygraph=True,
788
                                inplace_atol=None):
L
lujun 已提交
789 790
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
791
                place, no_check_set=no_check_set)
792
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
793
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
794 795
            if out_name not in self.outputs:
                continue
796 797
            if no_check_set is not None and out_name in no_check_set:
                continue
798

799 800 801 802 803 804 805 806 807 808 809 810
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
811 812
            def find_actual(target_name, fetch_list):
                found = [
813 814
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
815 816 817 818 819 820
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

821 822
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
823 824 825
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
826 827
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
828
                    if check_dygraph:
829 830
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
M
minqiyang 已提交
831 832
                        imperative_actual_t = np.array(
                            imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
833
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
834 835
                    actual = outs[idx]
                    actual_t = np.array(actual)
836 837
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
838 839
                    self.assertTrue(
                        np.allclose(
840
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
841 842
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
843
                    if check_dygraph:
M
minqiyang 已提交
844 845 846 847 848 849 850
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
851
                            str(place) + " in dygraph mode")
852 853
                    if isinstance(expect, tuple):
                        self.assertListEqual(
854 855
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
856
                            ") has different lod at " + str(place))
857 858 859 860 861 862 863
                        if check_dygraph:
                            self.assertListEqual(
                                imperative_actual._ivar.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
864
            else:
L
lujun 已提交
865
                if check_dygraph:
866 867
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
M
minqiyang 已提交
868 869
                    imperative_actual_t = np.array(
                        imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
870
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
871 872
                actual = outs[idx]
                actual_t = np.array(actual)
873
                expect = self.outputs[out_name]
874
                expect_t = expect[0] if isinstance(expect, tuple) else expect
875 876
                self.assertTrue(
                    np.allclose(
877
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
878
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
879
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
880
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
881
                if check_dygraph:
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
898
                if isinstance(expect, tuple):
899 900
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
901
                                         ") has different lod at " + str(place))
L
lujun 已提交
902
                    if check_dygraph:
M
minqiyang 已提交
903 904
                        self.assertListEqual(
                            imperative_actual._ivar.value().get_tensor()
M
minqiyang 已提交
905 906
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
907
                            str(place) + " in dygraph mode")
908

909 910 911 912
        # inplace_atol only used when op doesn't ensure computational consistency
        if inplace_atol is not None:
            warnings.warn(
                "By default, inplace_atol should not be set, please check it")
913 914
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest 
915 916 917
        self.check_inplace_output_with_place(
            place, no_check_set=no_check_set, inplace_atol=inplace_atol)

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

966
    def _get_places(self):
D
dzhwinter 已提交
967 968 969 970 971 972
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
973 974
                else:
                    return []
D
dzhwinter 已提交
975 976
            else:
                return []
977
        places = [fluid.CPUPlace()]
978
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
979 980
        use_ngraph = fluid.core.is_compiled_with_ngraph(
        ) and fluid.core.get_flags_use_ngraph()
B
baojun 已提交
981 982
        if use_ngraph:
            cpu_only = True
983 984
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
985
            places.append(core.CUDAPlace(0))
986 987
        return places

M
minqiyang 已提交
988 989 990 991
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
992
                     check_dygraph=True,
993 994
                     inplace_atol=None,
                     check_compile_vs_runtime=False):
995
        places = self._get_places()
Q
qijun 已提交
996
        for place in places:
997 998 999 1000 1001 1002 1003 1004
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
            if check_compile_vs_runtime:
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1005

1006
    def check_output_customized(self, checker):
1007
        places = self._get_places()
1008 1009 1010
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1011
            outs.sort(key=len)
1012 1013
            checker(outs)

D
Dun 已提交
1014 1015
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
1016

M
minqiyang 已提交
1017
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1018 1019 1020 1021 1022 1023 1024 1025
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1026
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
1027 1028 1029
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
1030 1031 1032 1033 1034

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1035
                   output_names,
1036
                   no_grad_set=None,
1037
                   numeric_grad_delta=0.005,
1038
                   in_place=False,
Q
Qiao Longfei 已提交
1039
                   max_relative_error=0.005,
1040 1041
                   user_defined_grads=None,
                   check_dygraph=True):
1042
        places = self._get_places()
1043 1044 1045 1046
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
1047
                                       user_defined_grads, check_dygraph)
1048 1049 1050 1051 1052 1053 1054 1055 1056

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1057 1058
                              user_defined_grads=None,
                              check_dygraph=True):
1059
        self.scope = core.Scope()
Q
qijun 已提交
1060
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1061
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1062
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1074

1075 1076 1077
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
1078 1079 1080
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
1081
        numeric_grads = user_defined_grads or [
1082
            get_numeric_gradient(
1083
                place,
1084 1085 1086 1087
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1088
                output_names,
1089
                delta=numeric_grad_delta,
C
chengduo 已提交
1090
                in_place=in_place) for input_to_check in inputs_to_check
1091
        ]
1092 1093
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)
D
Dun 已提交
1094 1095 1096
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        if check_dygraph:
            dygraph_grad = self._get_dygraph_grad(inputs_to_check, place,
                                                  output_names, no_grad_set)
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

            if len(outputs_valid) == 1:
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                for outputs_valid_key in outputs_valid:
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[outputs_valid_key]},
                        outputs={"Out": [loss]},
                        attrs=None)
            else:
                avg_sum = []
                for cur_loss in outputs_valid:
                    cur_avg_loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False)
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[cur_loss]},
                        outputs={"Out": [cur_avg_loss]},
                        attrs=None)
                    avg_sum.append(cur_avg_loss)
                loss_sum = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='sum',
                    inputs={"X": avg_sum},
                    outputs={"Out": loss_sum},
                    attrs=None)
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='scale',
                    inputs={"X": loss_sum},
                    outputs={"Out": loss},
                    attrs={'scale': 1.0 / float(len(avg_sum))})
            loss.backward()

            fetch_list_grad = []
            for inputs_to_check_name in inputs_to_check:
                a = inputs_grad_dict[inputs_to_check_name].gradient()
                fetch_list_grad.append(a)
            return fetch_list_grad

Y
Yu Yang 已提交
1206 1207 1208 1209 1210
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1211
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1212 1213
        return tensor

K
Kexin Zhao 已提交
1214
    @staticmethod
K
Kexin Zhao 已提交
1215 1216
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1217

D
dzhwinter 已提交
1218 1219 1220 1221 1222 1223 1224 1225
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1226 1227 1228 1229 1230 1231
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
1232 1233
        prog = Program()
        block = prog.global_block()
1234 1235
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
1236
        param_grad_list = append_backward(
Y
Yu Yang 已提交
1237 1238
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

1239 1240
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1241 1242

        fetch_list = [g for p, g in param_grad_list]
1243 1244
        if parallel:
            use_cuda = False
1245
            if isinstance(place, fluid.CUDAPlace):
1246
                use_cuda = True
1247 1248 1249 1250
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1251 1252 1253
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))