npu_op_runner.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/npu_op_runner.h"

#include <paddle/fluid/framework/data_type.h>
#include <paddle/fluid/framework/operator.h>

#include <map>
#include <string>
#include <vector>

#include "acl/acl.h"
#include "acl/acl_op_compiler.h"

#include "paddle/fluid/framework/framework.pb.h"

namespace paddle {
namespace operators {

static std::map<framework::proto::VarType::Type, aclDataType>
    DTYPE_2_ACL_DTYPE = {
        {framework::proto::VarType::BOOL, ACL_BOOL},
P
pangyoki 已提交
35
        {framework::proto::VarType::UINT8, ACL_UINT8},
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        {framework::proto::VarType::INT16, ACL_INT16},
        {framework::proto::VarType::INT32, ACL_INT32},
        {framework::proto::VarType::INT64, ACL_INT64},
        {framework::proto::VarType::FP16, ACL_FLOAT16},
        {framework::proto::VarType::FP32, ACL_FLOAT},
        {framework::proto::VarType::FP64, ACL_DOUBLE},
};

static std::map<DataLayout, aclFormat> DATA_LAYOUT_2_ACL_FORMAT = {
    {DataLayout::kNCHW, ACL_FORMAT_NCHW},
    {DataLayout::kNHWC, ACL_FORMAT_NHWC},
    {DataLayout::kAnyLayout, ACL_FORMAT_ND},
};

aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype) {
  auto iter = DTYPE_2_ACL_DTYPE.find(dtype);
  PADDLE_ENFORCE_NE(iter, DTYPE_2_ACL_DTYPE.end(),
                    platform::errors::NotFound(
                        "The data type (%s) can not convert to ACL data type.",
                        framework::DataTypeToString(dtype)));
  return iter->second;
}

aclFormat ConvertToNpuFormat(DataLayout layout) {
  auto iter = DATA_LAYOUT_2_ACL_FORMAT.find(layout);
  PADDLE_ENFORCE_NE(
      iter, DATA_LAYOUT_2_ACL_FORMAT.end(),
      platform::errors::NotFound(
          "The data type (%s) can not convert to ACL data type.", layout));
  return iter->second;
}

68 69 70 71
aclrtStream GetCurrentNPUStream(int device_id) {
  if (device_id == -1) {
    device_id = platform::GetCurrentNPUDeviceId();
  }
72 73 74 75 76 77
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
      pool.Get(platform::NPUPlace(device_id)));
  return dev_ctx->stream();
}

78 79 80
NpuOpRunner::NpuOpRunner() {}

NpuOpRunner::NpuOpRunner(const std::string &op_type) : op_type_(op_type) {}
81

82 83
NpuOpRunner::NpuOpRunner(const std::string &op_type,
                         const std::vector<Tensor> &inputs,
84
                         const std::vector<Tensor> &outputs,
85
                         const NPUAttributeMap &attrs)
86 87 88 89 90 91 92
    : op_type_(op_type) {
  AddInputs(inputs);
  AddOutputs(outputs);
  AddAttrs(attrs);
}

NpuOpRunner::~NpuOpRunner() {
L
Leo Chen 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  VLOG(5) << "Free NpuOpRunner(" << this << ") of " << op_type_;
  // Is it safe to free the descs/buffers after run called in host ?
  aclopDestroyAttr(attr_);  // return void
  for (auto desc : input_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto desc : output_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto buffer : input_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
  for (auto buffer : output_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
108 109 110 111
}

const std::string &NpuOpRunner::Type() { return op_type_; }

112 113 114 115 116
NpuOpRunner &NpuOpRunner::SetType(const std::string &name) {
  op_type_ = name;
  return *this;
}

117
NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
118
                                  const NPUAttribute &attr) {
119 120 121
  if (!attr_) {
    attr_ = aclopCreateAttr();
  }
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  if (attr.type() == typeid(bool)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
  } else if (attr.type() == typeid(int)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int, attr)));

  } else if (attr.type() == typeid(int64_t)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int64_t, attr)));
  } else if (attr.type() == typeid(float)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrFloat(attr_, name.c_str(), BOOST_GET_CONST(float, attr)));
  } else if (attr.type() == typeid(std::vector<bool>)) {
    auto a = BOOST_GET_CONST(std::vector<bool>, attr);
    std::vector<uint8_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<uint8_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListBool(
        attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int>)) {
    auto a = BOOST_GET_CONST(std::vector<int>, attr);
    std::vector<int64_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<int64_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int64_t>)) {
    auto a = BOOST_GET_CONST(std::vector<int64_t>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::vector<float>)) {
    auto a = BOOST_GET_CONST(std::vector<float>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListFloat(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::string)) {
    auto a = BOOST_GET_CONST(std::string, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrString(attr_, name.c_str(), a.c_str()));
  } else if (attr.type() == typeid(std::vector<std::string>)) {
    auto a = BOOST_GET_CONST(std::vector<std::string>, attr);
    std::vector<const char *> s;
    for (auto &it : a) {
      s.push_back(it.data());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListString(attr_, name.c_str(), s.size(), s.data()));
171 172 173 174 175 176 177 178 179 180
  } else if (attr.type() == typeid(std::vector<std::vector<int64_t>>)) {
    auto a = BOOST_GET_CONST(std::vector<std::vector<int64_t>>, attr);
    std::vector<int64_t *> data;
    std::vector<int> num;
    for (auto &&v : a) {
      data.push_back(v.data());
      num.push_back(v.size());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListListInt(
        attr_, name.c_str(), data.size(), num.data(), data.data()));
181 182 183 184 185 186 187
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Can not convert attribubte '%s' to convert to aclopAttr", name));
  }
  return *this;
}

188
NpuOpRunner &NpuOpRunner::AddAttrs(const NPUAttributeMap &attrs) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
  for (const auto &pair : attrs) {
    AddAttr(pair.first, pair.second);
  }
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor, aclMemType mem_type) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor, mem_type));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int32_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(dims, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int64_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(dims, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

243 244 245 246 247 248 249 250 251
NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
  // create aclTensorDesc
  output_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  output_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
252 253
  input_descs_.reserve(tensors.size());
  input_buffers_.reserve(tensors.size());
254 255 256 257 258 259 260 261 262
  for (auto tensor : tensors) {
    // create aclTensorDesc
    input_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    input_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// NOTE(zhiqiu): For operators whose input is a list (such as concat, stack),
// It is needed to set the name of each input tensor.
NpuOpRunner &NpuOpRunner::AddInputNames(const std::vector<std::string> &names) {
  PADDLE_ENFORCE_EQ(names.size(), input_descs_.size(),
                    platform::errors::InvalidArgument(
                        "The size of input names should be "
                        "equal to the size of input descs, but got the size "
                        "of input names is %d, the size of input descs is %d.",
                        names.size(), input_descs_.size()));
  for (size_t i = 0; i < names.size(); ++i) {
    aclSetTensorDescName(input_descs_[i], names[i].c_str());
  }
  return *this;
}

278
NpuOpRunner &NpuOpRunner::AddOutputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
279 280
  output_descs_.reserve(tensors.size());
  output_buffers_.reserve(tensors.size());
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  for (auto tensor : tensors) {
    // create aclTensorDesc
    output_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    output_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

aclTensorDesc *NpuOpRunner::GetInputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, input_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, input_descs_.size()));
  return input_descs_[index];
}

aclTensorDesc *NpuOpRunner::GetOutputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, output_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of output of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, output_descs_.size()));
  return output_descs_[index];
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetInputDescs() {
  return input_descs_;
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetOutputDescs() {
  return output_descs_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetInputBuffers() {
  return input_buffers_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
  return output_buffers_;
}

324 325
aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
                                             aclMemType mem_type) {
326 327 328
  auto dtype = ConvertToNpuDtype(tensor.type());
  auto format = ConvertToNpuFormat(tensor.layout());
  auto dims = framework::vectorize(tensor.dims());
P
pangyoki 已提交
329 330 331 332 333 334 335 336
  int size = dims.size();
  // TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
  // OP must be a scalar with shape[0]. At present, the shape
  // of the `prob` Tensor of this OP is forced to be set to 0
  // in `npu_op_runner.cc`, which needs to be optimized later.
  if (op_type_ == "DropOutGenMask" && size == 1 && *(dims.data()) == 1) {
    size = 0;
  }
337

338 339 340
  VLOG(4) << "NPU dtype:" << dtype << " "
          << "rank:" << dims.size() << " dims:" << tensor.dims()
          << " format:" << format;
341

P
pangyoki 已提交
342
  auto *desc = aclCreateTensorDesc(dtype, size, dims.data(), format);
343 344
  PADDLE_ENFORCE_NOT_NULL(
      desc, platform::errors::External("Call aclCreateTensorDesc failed."));
345
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
P
pangyoki 已提交
346
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageShape(desc, size, dims.data()));
347 348 349
  if (mem_type == ACL_MEMTYPE_HOST) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type));
  }
350 351 352 353 354
  return desc;
}

aclDataBuffer *NpuOpRunner::CreateDataBuffer(Tensor tensor) {
  void *ptr = tensor.data<void>();
355
  VLOG(4) << "NPU ptr: " << ptr << ", size: " << tensor.memory_size();
356 357 358 359 360 361
  auto *buffer = aclCreateDataBuffer(ptr, tensor.memory_size());
  PADDLE_ENFORCE_NOT_NULL(
      buffer, platform::errors::External("Call aclCreateDataBuffer failed."));
  return buffer;
}

L
Leo Chen 已提交
362
void NpuOpRunner::Run(aclrtStream stream) const {
363 364 365 366
  if (!stream) {
    VLOG(4) << "Run with default current npu stream: " << stream;
    stream = GetCurrentNPUStream();
  }
L
Leo Chen 已提交
367
  VLOG(5) << "NpuOpRunner(" << this << ") Run:";
368 369 370 371
  VLOG(4) << "op_type: " << op_type_;
  VLOG(4) << "input_desc.size: " << input_descs_.size();
  VLOG(4) << "output_desc.size: " << output_descs_.size();
  VLOG(4) << "attr: " << attr_;
372 373
  VLOG(4) << "stream: " << stream;

374 375 376 377 378 379 380 381
  aclError ret = aclopCompileAndExecute(
      op_type_.c_str(), input_descs_.size(), input_descs_.data(),
      input_buffers_.data(), output_descs_.size(), output_descs_.data(),
      output_buffers_.data(), attr_, ACL_ENGINE_SYS, ACL_COMPILE_SYS, NULL,
      stream);
  VLOG(4) << "after aclopCompileAndExecute: " << ret;
  PADDLE_ENFORCE_NPU_SUCCESS(ret);
}
382

383 384
}  // namespace operators
}  // namespace paddle