npu_op_runner.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/npu_op_runner.h"

#include <paddle/fluid/framework/data_type.h>
#include <paddle/fluid/framework/operator.h>

#include <map>
#include <string>
#include <vector>

#include "acl/acl.h"
#include "acl/acl_op_compiler.h"

#include "paddle/fluid/framework/framework.pb.h"

namespace paddle {
namespace operators {

static std::map<framework::proto::VarType::Type, aclDataType>
    DTYPE_2_ACL_DTYPE = {
        {framework::proto::VarType::BOOL, ACL_BOOL},
        {framework::proto::VarType::INT16, ACL_INT16},
        {framework::proto::VarType::INT32, ACL_INT32},
        {framework::proto::VarType::INT64, ACL_INT64},
        {framework::proto::VarType::FP16, ACL_FLOAT16},
        {framework::proto::VarType::FP32, ACL_FLOAT},
        {framework::proto::VarType::FP64, ACL_DOUBLE},
};

static std::map<DataLayout, aclFormat> DATA_LAYOUT_2_ACL_FORMAT = {
    {DataLayout::kNCHW, ACL_FORMAT_NCHW},
    {DataLayout::kNHWC, ACL_FORMAT_NHWC},
    {DataLayout::kAnyLayout, ACL_FORMAT_ND},
};

aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype) {
  auto iter = DTYPE_2_ACL_DTYPE.find(dtype);
  PADDLE_ENFORCE_NE(iter, DTYPE_2_ACL_DTYPE.end(),
                    platform::errors::NotFound(
                        "The data type (%s) can not convert to ACL data type.",
                        framework::DataTypeToString(dtype)));
  return iter->second;
}

aclFormat ConvertToNpuFormat(DataLayout layout) {
  auto iter = DATA_LAYOUT_2_ACL_FORMAT.find(layout);
  PADDLE_ENFORCE_NE(
      iter, DATA_LAYOUT_2_ACL_FORMAT.end(),
      platform::errors::NotFound(
          "The data type (%s) can not convert to ACL data type.", layout));
  return iter->second;
}

67 68 69 70 71 72 73 74
aclrtStream GetCurrentNPUStream() {
  int device_id = platform::GetCurrentNPUDeviceId();
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
      pool.Get(platform::NPUPlace(device_id)));
  return dev_ctx->stream();
}

75 76 77 78 79 80
NpuOpRunner::NpuOpRunner(std::string op_type) : op_type_(op_type) {
  attr_ = aclopCreateAttr();
}

NpuOpRunner::NpuOpRunner(std::string op_type, const std::vector<Tensor> &inputs,
                         const std::vector<Tensor> &outputs,
81
                         const NPUAttributeMap &attrs)
82 83 84 85 86 87 88 89 90 91 92 93 94 95
    : op_type_(op_type) {
  attr_ = aclopCreateAttr();
  AddInputs(inputs);
  AddOutputs(outputs);
  AddAttrs(attrs);
}

NpuOpRunner::~NpuOpRunner() {
  // TODO(zhiqiu): handle free
}

const std::string &NpuOpRunner::Type() { return op_type_; }

NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
96
                                  const NPUAttribute &attr) {
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  if (attr.type() == typeid(bool)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
  } else if (attr.type() == typeid(int)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int, attr)));

  } else if (attr.type() == typeid(int64_t)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int64_t, attr)));
  } else if (attr.type() == typeid(float)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrFloat(attr_, name.c_str(), BOOST_GET_CONST(float, attr)));
  } else if (attr.type() == typeid(std::vector<bool>)) {
    auto a = BOOST_GET_CONST(std::vector<bool>, attr);
    std::vector<uint8_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<uint8_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListBool(
        attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int>)) {
    auto a = BOOST_GET_CONST(std::vector<int>, attr);
    std::vector<int64_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<int64_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int64_t>)) {
    auto a = BOOST_GET_CONST(std::vector<int64_t>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::vector<float>)) {
    auto a = BOOST_GET_CONST(std::vector<float>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListFloat(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::string)) {
    auto a = BOOST_GET_CONST(std::string, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrString(attr_, name.c_str(), a.c_str()));
  } else if (attr.type() == typeid(std::vector<std::string>)) {
    auto a = BOOST_GET_CONST(std::vector<std::string>, attr);
    std::vector<const char *> s;
    for (auto &it : a) {
      s.push_back(it.data());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListString(attr_, name.c_str(), s.size(), s.data()));
146 147 148 149 150 151 152 153 154 155
  } else if (attr.type() == typeid(std::vector<std::vector<int64_t>>)) {
    auto a = BOOST_GET_CONST(std::vector<std::vector<int64_t>>, attr);
    std::vector<int64_t *> data;
    std::vector<int> num;
    for (auto &&v : a) {
      data.push_back(v.data());
      num.push_back(v.size());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListListInt(
        attr_, name.c_str(), data.size(), num.data(), data.data()));
156 157 158 159 160 161 162
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Can not convert attribubte '%s' to convert to aclopAttr", name));
  }
  return *this;
}

163
NpuOpRunner &NpuOpRunner::AddAttrs(const NPUAttributeMap &attrs) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  for (const auto &pair : attrs) {
    AddAttr(pair.first, pair.second);
  }
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
  // create aclTensorDesc
  output_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  output_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInputs(const std::vector<Tensor> &tensors) {
  for (auto tensor : tensors) {
    // create aclTensorDesc
    input_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    input_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
// NOTE(zhiqiu): For operators whose input is a list (such as concat, stack),
// It is needed to set the name of each input tensor.
NpuOpRunner &NpuOpRunner::AddInputNames(const std::vector<std::string> &names) {
  PADDLE_ENFORCE_EQ(names.size(), input_descs_.size(),
                    platform::errors::InvalidArgument(
                        "The size of input names should be "
                        "equal to the size of input descs, but got the size "
                        "of input names is %d, the size of input descs is %d.",
                        names.size(), input_descs_.size()));
  for (size_t i = 0; i < names.size(); ++i) {
    aclSetTensorDescName(input_descs_[i], names[i].c_str());
  }
  return *this;
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
NpuOpRunner &NpuOpRunner::AddOutputs(const std::vector<Tensor> &tensors) {
  for (auto tensor : tensors) {
    // create aclTensorDesc
    output_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    output_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

aclTensorDesc *NpuOpRunner::GetInputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, input_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, input_descs_.size()));
  return input_descs_[index];
}

aclTensorDesc *NpuOpRunner::GetOutputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, output_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of output of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, output_descs_.size()));
  return output_descs_[index];
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetInputDescs() {
  return input_descs_;
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetOutputDescs() {
  return output_descs_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetInputBuffers() {
  return input_buffers_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
  return output_buffers_;
}

aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor) {
  auto dtype = ConvertToNpuDtype(tensor.type());
  auto format = ConvertToNpuFormat(tensor.layout());
  auto dims = framework::vectorize(tensor.dims());

260 261 262
  VLOG(4) << "NPU dtype:" << dtype << " "
          << "rank:" << dims.size() << " dims:" << tensor.dims()
          << " format:" << format;
263 264 265 266

  auto *desc = aclCreateTensorDesc(dtype, dims.size(), dims.data(), format);
  PADDLE_ENFORCE_NOT_NULL(
      desc, platform::errors::External("Call aclCreateTensorDesc failed."));
267 268 269
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
  PADDLE_ENFORCE_NPU_SUCCESS(
      aclSetTensorStorageShape(desc, dims.size(), dims.data()));
270 271 272 273 274
  return desc;
}

aclDataBuffer *NpuOpRunner::CreateDataBuffer(Tensor tensor) {
  void *ptr = tensor.data<void>();
275
  VLOG(4) << "NPU ptr: " << ptr << ", size: " << tensor.memory_size();
276 277 278 279 280 281 282
  auto *buffer = aclCreateDataBuffer(ptr, tensor.memory_size());
  PADDLE_ENFORCE_NOT_NULL(
      buffer, platform::errors::External("Call aclCreateDataBuffer failed."));
  return buffer;
}

void NpuOpRunner::Run(aclrtStream stream) {
283 284 285 286 287
  if (!stream) {
    VLOG(4) << "Run with default current npu stream: " << stream;
    stream = GetCurrentNPUStream();
  }

288 289 290 291
  VLOG(4) << "op_type: " << op_type_;
  VLOG(4) << "input_desc.size: " << input_descs_.size();
  VLOG(4) << "output_desc.size: " << output_descs_.size();
  VLOG(4) << "attr: " << attr_;
292 293
  VLOG(4) << "stream: " << stream;

294 295 296 297 298 299 300 301 302 303
  aclError ret = aclopCompileAndExecute(
      op_type_.c_str(), input_descs_.size(), input_descs_.data(),
      input_buffers_.data(), output_descs_.size(), output_descs_.data(),
      output_buffers_.data(), attr_, ACL_ENGINE_SYS, ACL_COMPILE_SYS, NULL,
      stream);
  VLOG(4) << "after aclopCompileAndExecute: " << ret;
  PADDLE_ENFORCE_NPU_SUCCESS(ret);
}
}  // namespace operators
}  // namespace paddle