npu_op_runner.cc 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/npu_op_runner.h"

#include <paddle/fluid/framework/data_type.h>
#include <paddle/fluid/framework/operator.h>

#include <map>
#include <string>
#include <vector>

#include "acl/acl.h"
#include "acl/acl_op_compiler.h"

#include "paddle/fluid/framework/framework.pb.h"

namespace paddle {
namespace operators {

static std::map<framework::proto::VarType::Type, aclDataType>
    DTYPE_2_ACL_DTYPE = {
        {framework::proto::VarType::BOOL, ACL_BOOL},
        {framework::proto::VarType::INT16, ACL_INT16},
        {framework::proto::VarType::INT32, ACL_INT32},
        {framework::proto::VarType::INT64, ACL_INT64},
        {framework::proto::VarType::FP16, ACL_FLOAT16},
        {framework::proto::VarType::FP32, ACL_FLOAT},
        {framework::proto::VarType::FP64, ACL_DOUBLE},
};

static std::map<DataLayout, aclFormat> DATA_LAYOUT_2_ACL_FORMAT = {
    {DataLayout::kNCHW, ACL_FORMAT_NCHW},
    {DataLayout::kNHWC, ACL_FORMAT_NHWC},
    {DataLayout::kAnyLayout, ACL_FORMAT_ND},
};

aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype) {
  auto iter = DTYPE_2_ACL_DTYPE.find(dtype);
  PADDLE_ENFORCE_NE(iter, DTYPE_2_ACL_DTYPE.end(),
                    platform::errors::NotFound(
                        "The data type (%s) can not convert to ACL data type.",
                        framework::DataTypeToString(dtype)));
  return iter->second;
}

aclFormat ConvertToNpuFormat(DataLayout layout) {
  auto iter = DATA_LAYOUT_2_ACL_FORMAT.find(layout);
  PADDLE_ENFORCE_NE(
      iter, DATA_LAYOUT_2_ACL_FORMAT.end(),
      platform::errors::NotFound(
          "The data type (%s) can not convert to ACL data type.", layout));
  return iter->second;
}

67 68 69 70
aclrtStream GetCurrentNPUStream(int device_id) {
  if (device_id == -1) {
    device_id = platform::GetCurrentNPUDeviceId();
  }
71 72 73 74 75 76
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
      pool.Get(platform::NPUPlace(device_id)));
  return dev_ctx->stream();
}

77 78 79
NpuOpRunner::NpuOpRunner() {}

NpuOpRunner::NpuOpRunner(const std::string &op_type) : op_type_(op_type) {}
80

81 82
NpuOpRunner::NpuOpRunner(const std::string &op_type,
                         const std::vector<Tensor> &inputs,
83
                         const std::vector<Tensor> &outputs,
84
                         const NPUAttributeMap &attrs)
85 86 87 88 89 90 91
    : op_type_(op_type) {
  AddInputs(inputs);
  AddOutputs(outputs);
  AddAttrs(attrs);
}

NpuOpRunner::~NpuOpRunner() {
L
Leo Chen 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  VLOG(5) << "Free NpuOpRunner(" << this << ") of " << op_type_;
  // Is it safe to free the descs/buffers after run called in host ?
  aclopDestroyAttr(attr_);  // return void
  for (auto desc : input_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto desc : output_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto buffer : input_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
  for (auto buffer : output_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
107 108 109 110
}

const std::string &NpuOpRunner::Type() { return op_type_; }

111 112 113 114 115
NpuOpRunner &NpuOpRunner::SetType(const std::string &name) {
  op_type_ = name;
  return *this;
}

116
NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
117
                                  const NPUAttribute &attr) {
118 119 120
  if (!attr_) {
    attr_ = aclopCreateAttr();
  }
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  if (attr.type() == typeid(bool)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
  } else if (attr.type() == typeid(int)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int, attr)));

  } else if (attr.type() == typeid(int64_t)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int64_t, attr)));
  } else if (attr.type() == typeid(float)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrFloat(attr_, name.c_str(), BOOST_GET_CONST(float, attr)));
  } else if (attr.type() == typeid(std::vector<bool>)) {
    auto a = BOOST_GET_CONST(std::vector<bool>, attr);
    std::vector<uint8_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<uint8_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListBool(
        attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int>)) {
    auto a = BOOST_GET_CONST(std::vector<int>, attr);
    std::vector<int64_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<int64_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int64_t>)) {
    auto a = BOOST_GET_CONST(std::vector<int64_t>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::vector<float>)) {
    auto a = BOOST_GET_CONST(std::vector<float>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListFloat(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::string)) {
    auto a = BOOST_GET_CONST(std::string, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrString(attr_, name.c_str(), a.c_str()));
  } else if (attr.type() == typeid(std::vector<std::string>)) {
    auto a = BOOST_GET_CONST(std::vector<std::string>, attr);
    std::vector<const char *> s;
    for (auto &it : a) {
      s.push_back(it.data());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListString(attr_, name.c_str(), s.size(), s.data()));
170 171 172 173 174 175 176 177 178 179
  } else if (attr.type() == typeid(std::vector<std::vector<int64_t>>)) {
    auto a = BOOST_GET_CONST(std::vector<std::vector<int64_t>>, attr);
    std::vector<int64_t *> data;
    std::vector<int> num;
    for (auto &&v : a) {
      data.push_back(v.data());
      num.push_back(v.size());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListListInt(
        attr_, name.c_str(), data.size(), num.data(), data.data()));
180 181 182 183 184 185 186
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Can not convert attribubte '%s' to convert to aclopAttr", name));
  }
  return *this;
}

187
NpuOpRunner &NpuOpRunner::AddAttrs(const NPUAttributeMap &attrs) {
188 189 190 191 192 193 194 195 196 197 198 199 200 201
  for (const auto &pair : attrs) {
    AddAttr(pair.first, pair.second);
  }
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor, aclMemType mem_type) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor, mem_type));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int32_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(dims, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int64_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(dims, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

242 243 244 245 246 247 248 249 250
NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
  // create aclTensorDesc
  output_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  output_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
251 252
  input_descs_.reserve(tensors.size());
  input_buffers_.reserve(tensors.size());
253 254 255 256 257 258 259 260 261
  for (auto tensor : tensors) {
    // create aclTensorDesc
    input_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    input_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
// NOTE(zhiqiu): For operators whose input is a list (such as concat, stack),
// It is needed to set the name of each input tensor.
NpuOpRunner &NpuOpRunner::AddInputNames(const std::vector<std::string> &names) {
  PADDLE_ENFORCE_EQ(names.size(), input_descs_.size(),
                    platform::errors::InvalidArgument(
                        "The size of input names should be "
                        "equal to the size of input descs, but got the size "
                        "of input names is %d, the size of input descs is %d.",
                        names.size(), input_descs_.size()));
  for (size_t i = 0; i < names.size(); ++i) {
    aclSetTensorDescName(input_descs_[i], names[i].c_str());
  }
  return *this;
}

277
NpuOpRunner &NpuOpRunner::AddOutputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
278 279
  output_descs_.reserve(tensors.size());
  output_buffers_.reserve(tensors.size());
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  for (auto tensor : tensors) {
    // create aclTensorDesc
    output_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    output_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

aclTensorDesc *NpuOpRunner::GetInputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, input_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, input_descs_.size()));
  return input_descs_[index];
}

aclTensorDesc *NpuOpRunner::GetOutputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, output_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of output of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, output_descs_.size()));
  return output_descs_[index];
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetInputDescs() {
  return input_descs_;
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetOutputDescs() {
  return output_descs_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetInputBuffers() {
  return input_buffers_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
  return output_buffers_;
}

323 324
aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
                                             aclMemType mem_type) {
325 326 327 328
  auto dtype = ConvertToNpuDtype(tensor.type());
  auto format = ConvertToNpuFormat(tensor.layout());
  auto dims = framework::vectorize(tensor.dims());

329 330 331
  VLOG(4) << "NPU dtype:" << dtype << " "
          << "rank:" << dims.size() << " dims:" << tensor.dims()
          << " format:" << format;
332 333 334 335

  auto *desc = aclCreateTensorDesc(dtype, dims.size(), dims.data(), format);
  PADDLE_ENFORCE_NOT_NULL(
      desc, platform::errors::External("Call aclCreateTensorDesc failed."));
336 337 338
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
  PADDLE_ENFORCE_NPU_SUCCESS(
      aclSetTensorStorageShape(desc, dims.size(), dims.data()));
339 340 341
  if (mem_type == ACL_MEMTYPE_HOST) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type));
  }
342 343 344 345 346
  return desc;
}

aclDataBuffer *NpuOpRunner::CreateDataBuffer(Tensor tensor) {
  void *ptr = tensor.data<void>();
347
  VLOG(4) << "NPU ptr: " << ptr << ", size: " << tensor.memory_size();
348 349 350 351 352 353
  auto *buffer = aclCreateDataBuffer(ptr, tensor.memory_size());
  PADDLE_ENFORCE_NOT_NULL(
      buffer, platform::errors::External("Call aclCreateDataBuffer failed."));
  return buffer;
}

L
Leo Chen 已提交
354
void NpuOpRunner::Run(aclrtStream stream) const {
355 356 357 358
  if (!stream) {
    VLOG(4) << "Run with default current npu stream: " << stream;
    stream = GetCurrentNPUStream();
  }
L
Leo Chen 已提交
359
  VLOG(5) << "NpuOpRunner(" << this << ") Run:";
360 361 362 363
  VLOG(4) << "op_type: " << op_type_;
  VLOG(4) << "input_desc.size: " << input_descs_.size();
  VLOG(4) << "output_desc.size: " << output_descs_.size();
  VLOG(4) << "attr: " << attr_;
364 365
  VLOG(4) << "stream: " << stream;

366 367 368 369 370 371 372 373
  aclError ret = aclopCompileAndExecute(
      op_type_.c_str(), input_descs_.size(), input_descs_.data(),
      input_buffers_.data(), output_descs_.size(), output_descs_.data(),
      output_buffers_.data(), attr_, ACL_ENGINE_SYS, ACL_COMPILE_SYS, NULL,
      stream);
  VLOG(4) << "after aclopCompileAndExecute: " << ret;
  PADDLE_ENFORCE_NPU_SUCCESS(ret);
}
374

375 376
}  // namespace operators
}  // namespace paddle