lamb.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable
19 20 21
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.layer_helper import LayerHelper
W
wanghuancoder 已提交
22
from paddle import _C_ops
23
from paddle.fluid.executor import global_scope
24

25 26
__all__ = []

27 28

class Lamb(Optimizer):
29
    r"""
30 31 32 33 34 35 36 37 38 39 40
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .

    The updating of parameters follows:

    ..  math::

41
        m_t &= \beta_1 m_{t - 1}+ (1 - \beta_1)g_t
42

43
        v_t &= \beta_2 v_{t - 1}  + (1 - \beta_2)g_t^2
44

45
        m_t &= \frac{m_t}{\beta_1^t}
46

47
        v_t &= \frac{v_t}{\beta_2^t}
48

49
        r_t &= \frac{m_t}{\sqrt{v_t}+\epsilon}
50

51
        w_t &= w_{t-1} -\eta_t \frac{\left \| w_{t-1}\right \|}{\left \| r_t + \lambda w_{t-1}\right \|} (r_t + \lambda w_{t-1})
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01. Remind that weight_decay should be None.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
        parameters (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
67 68 69 70
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
71 72 73
            The default value is None in static mode, at this time all parameters will be updated.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
74 75 76
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
77 78 79 80
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
    Examples:
        .. code-block:: python
C
Chen Long 已提交
81
            
82
            import paddle
83 84

            inp = paddle.uniform(shape=[10, 10], dtype='float32', min=-0.1, max=0.1)
85 86 87 88 89 90 91 92 93
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.85], dtype="float32")
            lamb = paddle.optimizer.Lamb(learning_rate=0.002, parameters=linear.parameters(), lamb_weight_decay=0.01)
            back = out.backward()
            lamb.step()
            lamb.clear_grad()
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 parameters=None,
                 grad_clip=None,
109
                 exclude_from_weight_decay_fn=None,
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                 name=None):
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(Lamb, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=None,
            grad_clip=grad_clip,
            name=name)
        self.type = "lamb"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lamb_weight_decay = lamb_weight_decay
126
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
127 128 129 130 131 132 133
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lamb_weight_decay': lamb_weight_decay,
            'exclude_from_weight_decay_fn': exclude_from_weight_decay_fn,
        }
134
        self._master_weights = {}
135
        self._used_master_weights = {}
136 137 138
        # TODO(zengjinle): expose API as soon as possible
        self._multi_precision = False

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def _get_parameter(self, name, scope=None):
        if scope is None:
            scope = global_scope()

        p_t = scope.find_var(name).get_tensor()

        master_name = self._used_master_weights.get(name)
        if master_name is not None:
            master_p_t = scope.find_var(master_name).get_tensor()
            assert master_p_t._dtype() != p_t._dtype()
            assert master_p_t.shape() == p_t.shape()
        else:
            master_p_t = None
        return p_t, master_p_t

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def _create_master_weight(self, param):
        assert self._multi_precision
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True)
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32
                })
            self._master_weights[param.name] = var
        return var
180 181 182

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
183 184
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)
185 186 187

        # Create accumulator tensors for first and second moments
        for p in parameters:
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
            else:
                self._add_moments_pows(p)

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
        if acc_dtype == core.VarDesc.VarType.FP16:
            acc_dtype = core.VarDesc.VarType.FP32

        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
222 223
                name=self._beta1_pow_acc_str,
                param=p,
224
                dtype=acc_dtype,
225 226 227 228
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
                shape=[1],
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
229
        self._add_accumulator(
230 231
                name=self._beta2_pow_acc_str,
                param=p,
232
                dtype=acc_dtype,
233 234 235 236 237 238 239
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
                shape=[1],
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
240 241 242
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

243 244 245 246 247 248 249 250 251 252 253
        block.program._use_lamb = True

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

254 255
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
256 257 258
            weight_decay = 0.0
        else:
            weight_decay = self._lamb_weight_decay
259 260
        lr = self._create_param_lr(param_and_grad)

261 262
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
263 264 265 266 267 268
        p_name = param_and_grad[0].name
        if find_master:
            master_weight = self._master_weights[p_name]
            self._used_master_weights[p_name] = master_weight.name
        else:
            master_weight = None
269 270
        found_inf = self._get_auxiliary_var('found_inf')

271
        if framework.in_dygraph_mode():
272 273 274 275 276 277 278
            _C_ops.lamb(param_and_grad[0], param_and_grad[1], lr, moment1,
                        moment2, beta1_pow_acc, beta2_pow_acc, master_weight,
                        param_and_grad[0], moment1, moment2, beta1_pow_acc,
                        beta2_pow_acc, master_weight, 'beta1', self._beta1,
                        'beta2', self._beta2, 'epsilon', self._epsilon,
                        'weight_decay', weight_decay, 'multi_precision',
                        find_master)
279
            return None
280 281

        # create the lamb optimize op
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "LearningRate": lr,
            "Moment1": moment1,
            "Moment2": moment2,
            "Beta1Pow": beta1_pow_acc,
            "Beta2Pow": beta2_pow_acc
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "Moment1Out": moment1,
            "Moment2Out": moment2,
            "Beta1PowOut": beta1_pow_acc,
            "Beta2PowOut": beta2_pow_acc
        }
        attrs = {
            "beta1": self._beta1,
            "beta2": self._beta2,
            "epsilon": self._epsilon,
302 303
            "weight_decay": weight_decay,
            "multi_precision": find_master,
304 305
        }

306 307 308 309 310 311 312
        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

        if found_inf:
            inputs["SkipUpdate"] = found_inf

313 314
        lamb_op = block.append_op(
            type=self.type,
315 316 317
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
318 319 320
            stop_gradient=True)

        return lamb_op
321 322 323 324 325 326 327 328 329 330 331 332

    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._lamb_weight_decay = parameters.get(
            'lamb_weight_decay', self._default_dict['lamb_weight_decay'])
        self._exclude_from_weight_decay_fn = parameters.get(
            'exclude_from_weight_decay_fn',
            self._default_dict['exclude_from_weight_decay_fn'])
        parameters = parameters.get('params')
        return parameters