transpose_op.cc 14.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16

17
#include <memory>
18
#include <string>
19
#include <vector>
X
xzl 已提交
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
25 26 27 28 29 30 31 32 33
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext *ctx) const override {
35 36
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
37 38
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
39
    size_t x_rank = x_dims.size();
X
xzl 已提交
40
    size_t axis_size = axis.size();
X
xzl 已提交
41

X
xzl 已提交
42
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
43 44 45 46 47 48
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
                          x_rank, axis_size));
49 50 51

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
52 53 54 55 56 57
      PADDLE_ENFORCE_GE(axis[i], 0,
                        platform::errors::InvalidArgument(
                            "The axis should be greater than or equal to 0."
                            "But received %d of axis[%d]",
                            axis[i], i));

58 59 60 61 62 63 64 65 66 67
      PADDLE_ENFORCE_EQ(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1, true,
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
              i, axis[i], axis_size, i, count[axis[i]]));
X
xzl 已提交
68
    }
X
xzl 已提交
69

X
xzl 已提交
70
    framework::DDim out_dims(x_dims);
J
Jacek Czaja 已提交
71 72 73 74 75 76
#ifdef PADDLE_WITH_MKLDNN
    // Here we need to match dims to paddle layout
    // as we are producing non-oneDNN result
    if ((x_dims.size() >= 3) &&
        (paddle::platform::MKLDNNDeviceContext::tls()
             .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC)) {
77
      auto dims = phi::vectorize<int>(x_dims);
J
Jacek Czaja 已提交
78 79 80 81 82 83
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      x_dims = x_dims.reshape(dims);
      VLOG(3)
          << "Rotating Shape in Transpose from: kMKLDNN to: kNHWC output_shape";
    }
#endif
84
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
85
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
86
    }
Q
Qiao Longfei 已提交
87
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
88
  }
89 90 91 92 93

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
94
    auto &data_format = ctx.Attr<std::string>("data_format");
95
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
96
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
97 98
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
99
        this->CanMKLDNNBeUsed(ctx, data_type)) {
100 101 102 103
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
104 105
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                   library_);
106
  }
X
xzl 已提交
107 108 109 110
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
111
  void Make() override {
112
    AddInput(
X
xzl 已提交
113
        "X",
114 115
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
116 117
    AddAttr<std::vector<int>>(
        "axis",
118 119 120
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
121 122
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
123 124
        .SetDefault(false)
        .AsExtra();
125 126 127 128 129 130
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
131 132
        .SetDefault("AnyLayout")
        .AsExtra();
133 134 135 136
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
137 138
        .SetDefault(false)
        .AsExtra();
139 140 141 142
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
143 144
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
145
    /* int8 parameters */
X
xzl 已提交
146
    AddComment(R"DOC(
147 148
Transpose Operator.

149 150
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
151

152 153 154 155 156 157
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
158

159
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
160

161
    then the output $Y$ is:
W
wanghaoshuang 已提交
162

163 164 165 166 167 168
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
169

170
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
171
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
172

X
xzl 已提交
173 174 175 176 177 178 179 180
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

181
  void InferShape(framework::InferShapeContext *ctx) const override {
182 183 184
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "TransposeOpGrad");
Q
Qiao Longfei 已提交
185 186 187 188 189
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
190
  }
191 192 193 194 195 196 197

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
198 199
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
200 201
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
202
        this->CanMKLDNNBeUsed(ctx, data_type)) {
203 204 205 206
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
207 208
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                   library_);
209
  }
X
xzl 已提交
210 211
};

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
227
    if (!ctx->HasOutput("XShape")) return;
228 229 230 231 232 233
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
234
    ctx->SetOutputDim("XShape", phi::make_ddim(x_shape_dim));
235 236 237 238 239 240
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
241 242
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
243 244
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
245
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
246 247
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "X");
248 249
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
250
        this->CanMKLDNNBeUsed(ctx, data_type)) {
251 252
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
253
      using framework::proto::VarType;
254 255
      auto input_data_type =
          framework::TransToProtoVarType(ctx.Input<Tensor>("X")->dtype());
256 257 258 259
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
260 261
    }
#endif
262 263
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_,
                                   customized_type_value);
264 265 266 267 268 269 270
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
271 272 273
    AddOutput("XShape", "(Tensor)The output tensor.")
        .AsIntermediate()
        .AsExtra();
274 275 276
  }
};

H
hong 已提交
277 278
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
279
 public:
H
hong 已提交
280
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
281

282
  void Apply(GradOpPtr<T> grad_op) const override {
283
    grad_op->SetType("transpose2_grad");
H
hong 已提交
284 285 286 287
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
288 289 290
  }
};

291 292 293 294 295 296 297 298 299 300 301 302 303 304
template <typename T>
class Transpose2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("transpose2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

305 306 307 308 309
class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
310 311 312 313
    OP_INOUT_CHECK(ctx->HasInput("XShape"), "Input", "XShape",
                   "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Transpose2OpGrad");
314 315
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
316
      auto x_shape_dim = phi::slice_ddim(xshape_dim, 1, xshape_dim.size());
317 318 319 320 321 322 323 324
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
325 326 327
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
328 329 330
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx,
                                                framework::GradVarName("Out"));
331 332
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
333
        this->CanMKLDNNBeUsed(ctx, data_type)) {
334 335 336 337
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
338 339
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                   library_);
340 341 342
  }
};

H
hong 已提交
343 344 345 346 347 348 349 350
class TransposeGradInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType(framework::GradVarName("Out"),
                             framework::GradVarName("X"));
  }
};

X
xzl 已提交
351 352 353 354
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
355 356 357 358
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
H
hong 已提交
359 360
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad,
                  ops::TransposeGradInferVarType);
361 362

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
363 364
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
365
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad,
H
hong 已提交
366
                  ops::TransposeGradInferVarType,
367 368
                  ops::Transpose2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2DoubleGradMaker<paddle::imperative::OpBase>);