transpose_op.cc 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <memory>
17
#include <string>
18
#include <vector>
X
xzl 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
24 25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
34 35 36 37
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
38
    size_t x_rank = x_dims.size();
X
xzl 已提交
39
    size_t axis_size = axis.size();
X
xzl 已提交
40

X
xzl 已提交
41
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
42 43 44 45
                      "ShapeError: The input tensor's dimension "
                      "should be equal to the axis's size. "
                      "But received input tensor's dimension is %d, "
                      "axis's size is %d",
X
xzl 已提交
46
                      x_rank, axis_size);
47 48 49 50 51

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
52 53 54 55 56 57 58
          "ValueError: Each element of Attribute axis should "
          "be a unique value range from 0 to (dims - 1), "
          "where the dims is the axis's size, "
          "unique value means this axis value can appear only once. "
          "But received axis[%d] is %d, axis_size is %d, "
          "count[axis[%d]] is %d",
          i, axis[i], axis_size, i, count[axis[i]]);
X
xzl 已提交
59
    }
X
xzl 已提交
60

X
xzl 已提交
61
    framework::DDim out_dims(x_dims);
62
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
63
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
64
    }
Q
Qiao Longfei 已提交
65
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
66
  }
67 68 69 70 71 72 73 74 75 76 77 78 79 80

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
81 82
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
83
        layout_, library_);
84
  }
X
xzl 已提交
85 86 87 88
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
89
  void Make() override {
90
    AddInput(
X
xzl 已提交
91
        "X",
92 93
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
94 95
    AddAttr<std::vector<int>>(
        "axis",
96 97 98
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
99 100 101 102 103 104 105 106 107 108
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
109 110 111 112 113 114 115
    /* int8 parameters */
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
X
xzl 已提交
116
    AddComment(R"DOC(
117 118
Transpose Operator.

119 120
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
121

122 123 124 125 126 127
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
128

129
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
130

131
    then the output $Y$ is:
W
wanghaoshuang 已提交
132

133 134 135 136 137 138
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
139

140
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
141
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
142

X
xzl 已提交
143 144 145 146 147 148 149 150
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

151
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
152 153 154 155 156 157 158 159
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
160
  }
161 162 163 164 165 166 167 168 169 170 171 172 173 174

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
175 176 177
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
178
  }
X
xzl 已提交
179 180
};

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) should not be null");
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
211 212
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
213 214
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
215 216 217 218 219 220
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
221 222 223 224 225 226
      using framework::proto::VarType;
      auto input_data_type = ctx.Input<Tensor>("X")->type();
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
227 228
    }
#endif
229 230
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
231
        layout_, library_, customized_type_value);
232 233 234 235 236 237 238 239 240 241 242
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
    AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate();
  }
};

H
hong 已提交
243 244
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
245
 public:
H
hong 已提交
246
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
247

H
hong 已提交
248 249
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
250
    grad_op->SetType("transpose2_grad");
H
hong 已提交
251 252 253 254 255
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  }
};

class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("XShape"), "Input(XShape) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
      auto x_shape_dim =
          framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
279 280 281 282 283 284 285 286 287 288
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
289 290 291
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
292 293 294
  }
};

X
xzl 已提交
295 296 297 298
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
299 300 301 302
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
303
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
304

Q
QI JUN 已提交
305
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
306 307
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
X
xzl 已提交
308 309
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
P
phlrain 已提交
310 311
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
312 313

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
314 315
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
316 317 318
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad);

REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
319
    transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
320 321
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
322
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
323 324
REGISTER_OP_CPU_KERNEL(
    transpose2_grad,
325 326
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
327 328
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);