transpose_op.cc 11.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <memory>
17
#include <string>
18
#include <vector>
X
xzl 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
24 25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
34 35 36 37
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
38
    size_t x_rank = x_dims.size();
X
xzl 已提交
39
    size_t axis_size = axis.size();
X
xzl 已提交
40

X
xzl 已提交
41
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
42 43 44 45
                      "ShapeError: The input tensor's dimension "
                      "should be equal to the axis's size. "
                      "But received input tensor's dimension is %d, "
                      "axis's size is %d",
X
xzl 已提交
46
                      x_rank, axis_size);
47 48 49 50 51

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
52 53 54 55 56 57 58
          "ValueError: Each element of Attribute axis should "
          "be a unique value range from 0 to (dims - 1), "
          "where the dims is the axis's size, "
          "unique value means this axis value can appear only once. "
          "But received axis[%d] is %d, axis_size is %d, "
          "count[axis[%d]] is %d",
          i, axis[i], axis_size, i, count[axis[i]]);
X
xzl 已提交
59
    }
X
xzl 已提交
60

X
xzl 已提交
61
    framework::DDim out_dims(x_dims);
62
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
63
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
64
    }
Q
Qiao Longfei 已提交
65
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
66
  }
67 68 69 70 71 72 73 74 75 76 77 78 79 80

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
81 82 83
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout_, library_);
84
  }
X
xzl 已提交
85 86 87 88
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
89
  void Make() override {
90
    AddInput(
X
xzl 已提交
91
        "X",
92 93
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
94 95
    AddAttr<std::vector<int>>(
        "axis",
96 97 98
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
99 100 101 102 103 104 105 106 107 108
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
X
xzl 已提交
109
    AddComment(R"DOC(
110 111
Transpose Operator.

112 113
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
114

115 116 117 118 119 120
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
121

122
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
123

124
    then the output $Y$ is:
W
wanghaoshuang 已提交
125

126 127 128 129 130 131
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
132

133
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
134
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
135

X
xzl 已提交
136 137 138 139 140 141 142 143
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

144
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
145 146 147 148 149 150 151 152
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
153
  }
154 155 156 157 158 159 160 161 162 163 164 165 166 167

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
168 169 170
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
171
  }
X
xzl 已提交
172 173
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) should not be null");
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
204 205 206 207 208 209 210 211 212 213
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
214 215 216
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout_, library_);
217 218 219 220 221 222 223 224 225 226 227
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
    AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate();
  }
};

H
hong 已提交
228 229
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
230
 public:
H
hong 已提交
231
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
232

H
hong 已提交
233 234
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
235
    grad_op->SetType("transpose2_grad");
H
hong 已提交
236 237 238 239 240
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  }
};

class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("XShape"), "Input(XShape) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
      auto x_shape_dim =
          framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
264 265 266 267 268 269 270 271 272 273
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
274 275 276
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
277 278 279
  }
};

X
xzl 已提交
280 281 282 283
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
284 285 286 287
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
288
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
289

Q
QI JUN 已提交
290
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
291 292
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
X
xzl 已提交
293 294
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
P
phlrain 已提交
295 296
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
297 298

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
299 300
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
301 302 303
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad);

REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
304
    transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
305 306
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
307
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
308 309
REGISTER_OP_CPU_KERNEL(
    transpose2_grad,
310 311
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
312 313
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);