chunk_eval_op.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/chunk_eval_op.h"
16

17 18
#include <string>
#include <vector>
G
guosheng 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class ChunkEvalOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    OP_INOUT_CHECK(ctx->HasInput("Inference"), "Input", "Inference",
                   "chunk_eval");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "chunk_eval");

    OP_INOUT_CHECK(ctx->HasOutput("Precision"), "Output", "Precision",
                   "chunk_eval");
    OP_INOUT_CHECK(ctx->HasOutput("Recall"), "Output", "Recall", "chunk_eval");
    OP_INOUT_CHECK(ctx->HasOutput("F1-Score"), "Output", "F1-Score",
                   "chunk_eval");
    OP_INOUT_CHECK(ctx->HasOutput("NumInferChunks"), "Output", "NumInferChunks",
                   "chunk_eval");
    OP_INOUT_CHECK(ctx->HasOutput("NumLabelChunks"), "Output", "NumLabelChunks",
                   "chunk_eval");
    OP_INOUT_CHECK(ctx->HasOutput("NumCorrectChunks"), "Output",
                   "NumCorrectChunks", "chunk_eval");
G
guosheng 已提交
43 44 45 46

    auto inference_dim = ctx->GetInputDim("Inference");
    auto label_dim = ctx->GetInputDim("Label");

47 48
    PADDLE_ENFORCE_EQ(
        inference_dim, label_dim,
49 50 51 52
        platform::errors::InvalidArgument(
            "Input(Inference)'s shape must be the same as Input(Label)'s "
            "shape, but received [%s] (Inference) vs [%s] (Label).",
            inference_dim, label_dim));
G
guosheng 已提交
53

54 55
    bool use_padding = ctx->HasInput("SeqLength");
    if (use_padding) {
56 57 58
      PADDLE_ENFORCE_EQ(
          (inference_dim.size() == 3 && inference_dim[2] == 1) ||
              inference_dim.size() == 2,
59 60 61 62 63 64
          true,
          platform::errors::InvalidArgument(
              "when Input(SeqLength) is provided, Input(Inference) "
              "should be of dim 3 (batch_size, bucket, 1) or dim 2 "
              "(batch_size, bucket), but received [%s].",
              inference_dim));
65
      auto seq_length_dim = ctx->GetInputDim("SeqLength");
66 67 68 69 70
      PADDLE_ENFORCE_LE(seq_length_dim.size(), 2,
                        platform::errors::InvalidArgument(
                            "Input(SeqLength)'s rank should not be greater "
                            "than 2, but received %d.",
                            seq_length_dim.size()));
71 72
    }

G
guosheng 已提交
73 74 75
    ctx->SetOutputDim("Precision", {1});
    ctx->SetOutputDim("Recall", {1});
    ctx->SetOutputDim("F1-Score", {1});
G
guosheng 已提交
76 77 78
    ctx->SetOutputDim("NumInferChunks", {1});
    ctx->SetOutputDim("NumLabelChunks", {1});
    ctx->SetOutputDim("NumCorrectChunks", {1});
G
guosheng 已提交
79 80
  }

81
 protected:
82
  framework::OpKernelType GetExpectedKernelType(
G
guosheng 已提交
83
      const framework::ExecutionContext &ctx) const override {
84
    return framework::OpKernelType(framework::proto::VarType::FP32,
85
                                   platform::CPUPlace());
G
guosheng 已提交
86 87 88 89 90
  }
};

class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
91
  void Make() override {
G
guosheng 已提交
92
    AddInput("Inference",
Q
Qiao Longfei 已提交
93 94
             "(Tensor, default: Tensor<int64_t>). "
             "Predictions from the network.");
95
    AddInput("Label",
Q
Qiao Longfei 已提交
96
             "(Tensor, default: Tensor<int64_t>). The true tag sequences.");
97 98 99 100
    AddInput("SeqLength",
             "(Tensor, default: Tensor<int64_t>). The length of each sequence, "
             "used when Inference and Label are Tensor type .")
        .AsDispensable();
101 102 103
    AddOutput("Precision",
              "(float). The evaluated precision (called positive predictive "
              "value) of chunks on the given mini-batch.");
G
guosheng 已提交
104
    AddOutput("Recall",
105 106
              "(float). The evaluated recall (true positive rate or "
              "sensitivity) of chunks on the given mini-batch.");
G
guosheng 已提交
107
    AddOutput("F1-Score",
108
              "(float). The evaluated F1-Score on the given mini-batch.");
109 110 111
    AddOutput("NumInferChunks",
              "(int64_t). The number of chunks in Inference on the given "
              "mini-batch.");
G
guosheng 已提交
112
    AddOutput(
113 114 115 116 117 118
        "NumLabelChunks",
        "(int64_t). The number of chunks in Label on the given mini-batch.");
    AddOutput(
        "NumCorrectChunks",
        "(int64_t). The number of chunks both in Inference and Label on the "
        "given mini-batch.");
119
    AddAttr<int>("num_chunk_types",
Y
yi.wu 已提交
120 121 122 123 124 125
                 "The number of chunk type. See the description for details.");
    AddAttr<std::string>("chunk_scheme",
                         "The labeling scheme indicating "
                         "how to encode the chunks. Must be IOB, IOE, IOBES or "
                         "plain. See the description"
                         "for details.")
G
guosheng 已提交
126
        .SetDefault("IOB");
127
    AddAttr<std::vector<int>>("excluded_chunk_types",
Y
yi.wu 已提交
128
                              "A list including chunk type ids "
129
                              "indicating chunk types that are not counted. "
Y
yi.wu 已提交
130
                              "See the description for details.")
G
guosheng 已提交
131 132
        .SetDefault(std::vector<int>{});
    AddComment(R"DOC(
Y
yangyaming 已提交
133
For some basics of chunking, please refer to
Y
yi.wu 已提交
134
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
135

Y
yi.wu 已提交
136
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
Y
yangyaming 已提交
137
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
138
Here is a NER example of labeling for these tagging schemes:
Y
yi.wu 已提交
139 140 141 142 143 144
   
          Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
   IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
   IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
   IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
   IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
145

Q
Qiao Longfei 已提交
146
There are three chunk types(named entity types) including PER(person), ORG(organization)
147 148
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

Y
yangyaming 已提交
149 150 151
Since the calculations actually use label ids rather than labels, extra attention
should be paid when mapping labels to ids to make CheckEvalOp work. The key point
is that the listed equations are satisfied by ids.
Y
yi.wu 已提交
152 153 154
   
   tag_type = label % num_tag_type
   chunk_type = label / num_tag_type
155

Y
yangyaming 已提交
156
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
157
is the num of chunk types, and `tag_type` get its value from the following table.
Y
yi.wu 已提交
158 159 160 161 162 163
   
   Scheme Begin Inside End   Single
    plain   0     -      -     -
    IOB     0     1      -     -
    IOE     -     0      1     -
    IOBES   0     1      2     3
G
guosheng 已提交
164

Y
yangyaming 已提交
165
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
166
PER and LOC. To satisfy the above equations, the label map can be like this:
G
guosheng 已提交
167

Y
yi.wu 已提交
168 169 170 171 172 173 174
   B-ORG  0
   I-ORG  1
   B-PER  2
   I-PER  3
   B-LOC  4
   I-LOC  5
   O      6
G
guosheng 已提交
175

Y
yi.wu 已提交
176
It's not hard to verify the equations noting that the num of chunk types
Y
yangyaming 已提交
177 178
is 3 and the num of tag types in IOB scheme is 2. For example, the label
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
179
I-LOC is 2, which consistent with the results from the equations.
G
guosheng 已提交
180 181 182 183 184 185 186 187 188 189 190 191
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(chunk_eval, ops::ChunkEvalOp,
                             ops::ChunkEvalOpMaker);
REGISTER_OP_CPU_KERNEL(chunk_eval,
                       ops::ChunkEvalKernel<paddle::platform::CPUPlace, float>);