chunk_eval_op.cc 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/chunk_eval_op.h"
16 17
#include <string>
#include <vector>
G
guosheng 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class ChunkEvalOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    PADDLE_ENFORCE_EQ(ctx->HasInput("Inference"), true,
                      "Input(Inference) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
                      "Input(Label) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Precision"), true,
                      "Output(Precision) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Recall"), true,
                      "Output(Recall) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("F1-Score"), true,
                      "Output(F1-Score) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("NumInferChunks"), true,
        "Output(NumInferChunks) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("NumLabelChunks"), true,
        "Output(NumLabelChunks) of ChunkEvalOp should not be null.");
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("NumCorrectChunks"), true,
G
guosheng 已提交
45
        "Output(NumCorrectChunks) of ChunkEvalOp should not be null.");
G
guosheng 已提交
46 47 48 49

    auto inference_dim = ctx->GetInputDim("Inference");
    auto label_dim = ctx->GetInputDim("Label");

50 51 52
    PADDLE_ENFORCE_EQ(
        inference_dim, label_dim,
        "Input(Inference)'s shape must be the same as Input(Label)'s shape.");
G
guosheng 已提交
53

54 55
    bool use_padding = ctx->HasInput("SeqLength");
    if (use_padding) {
56 57 58 59 60 61
      PADDLE_ENFORCE_EQ((inference_dim.size() == 3 && inference_dim[2] == 1) ||
                            inference_dim.size() == 2,
                        true,
                        "when Input(SeqLength) is provided, Input(Inference) "
                        "should be of dim 3 (batch_size, bucket, 1) or dim 2 "
                        "(batch_size, bucket).");
62
      auto seq_length_dim = ctx->GetInputDim("SeqLength");
63 64 65
      PADDLE_ENFORCE_LE(
          seq_length_dim.size(), 2,
          "Input(SeqLength)'s rank should not be greater than 2.");
66 67
    }

G
guosheng 已提交
68 69 70
    ctx->SetOutputDim("Precision", {1});
    ctx->SetOutputDim("Recall", {1});
    ctx->SetOutputDim("F1-Score", {1});
G
guosheng 已提交
71 72 73
    ctx->SetOutputDim("NumInferChunks", {1});
    ctx->SetOutputDim("NumLabelChunks", {1});
    ctx->SetOutputDim("NumCorrectChunks", {1});
G
guosheng 已提交
74 75
  }

76
 protected:
77
  framework::OpKernelType GetExpectedKernelType(
G
guosheng 已提交
78
      const framework::ExecutionContext &ctx) const override {
79
    return framework::OpKernelType(framework::proto::VarType::FP32,
80
                                   platform::CPUPlace());
G
guosheng 已提交
81 82 83 84 85
  }
};

class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
86
  void Make() override {
G
guosheng 已提交
87
    AddInput("Inference",
Q
Qiao Longfei 已提交
88 89
             "(Tensor, default: Tensor<int64_t>). "
             "Predictions from the network.");
90
    AddInput("Label",
Q
Qiao Longfei 已提交
91
             "(Tensor, default: Tensor<int64_t>). The true tag sequences.");
92 93 94 95
    AddInput("SeqLength",
             "(Tensor, default: Tensor<int64_t>). The length of each sequence, "
             "used when Inference and Label are Tensor type .")
        .AsDispensable();
96 97 98
    AddOutput("Precision",
              "(float). The evaluated precision (called positive predictive "
              "value) of chunks on the given mini-batch.");
G
guosheng 已提交
99
    AddOutput("Recall",
100 101
              "(float). The evaluated recall (true positive rate or "
              "sensitivity) of chunks on the given mini-batch.");
G
guosheng 已提交
102
    AddOutput("F1-Score",
103
              "(float). The evaluated F1-Score on the given mini-batch.");
104 105 106
    AddOutput("NumInferChunks",
              "(int64_t). The number of chunks in Inference on the given "
              "mini-batch.");
G
guosheng 已提交
107
    AddOutput(
108 109 110 111 112 113
        "NumLabelChunks",
        "(int64_t). The number of chunks in Label on the given mini-batch.");
    AddOutput(
        "NumCorrectChunks",
        "(int64_t). The number of chunks both in Inference and Label on the "
        "given mini-batch.");
114
    AddAttr<int>("num_chunk_types",
Y
yi.wu 已提交
115 116 117 118 119 120
                 "The number of chunk type. See the description for details.");
    AddAttr<std::string>("chunk_scheme",
                         "The labeling scheme indicating "
                         "how to encode the chunks. Must be IOB, IOE, IOBES or "
                         "plain. See the description"
                         "for details.")
G
guosheng 已提交
121
        .SetDefault("IOB");
122
    AddAttr<std::vector<int>>("excluded_chunk_types",
Y
yi.wu 已提交
123
                              "A list including chunk type ids "
124
                              "indicating chunk types that are not counted. "
Y
yi.wu 已提交
125
                              "See the description for details.")
G
guosheng 已提交
126 127
        .SetDefault(std::vector<int>{});
    AddComment(R"DOC(
Y
yangyaming 已提交
128
For some basics of chunking, please refer to
Y
yi.wu 已提交
129
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
130

Y
yi.wu 已提交
131
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
Y
yangyaming 已提交
132
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
133
Here is a NER example of labeling for these tagging schemes:
Y
yi.wu 已提交
134 135 136 137 138 139
   
          Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
   IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
   IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
   IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
   IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
140

Q
Qiao Longfei 已提交
141
There are three chunk types(named entity types) including PER(person), ORG(organization)
142 143
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

Y
yangyaming 已提交
144 145 146
Since the calculations actually use label ids rather than labels, extra attention
should be paid when mapping labels to ids to make CheckEvalOp work. The key point
is that the listed equations are satisfied by ids.
Y
yi.wu 已提交
147 148 149
   
   tag_type = label % num_tag_type
   chunk_type = label / num_tag_type
150

Y
yangyaming 已提交
151
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
152
is the num of chunk types, and `tag_type` get its value from the following table.
Y
yi.wu 已提交
153 154 155 156 157 158
   
   Scheme Begin Inside End   Single
    plain   0     -      -     -
    IOB     0     1      -     -
    IOE     -     0      1     -
    IOBES   0     1      2     3
G
guosheng 已提交
159

Y
yangyaming 已提交
160
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
161
PER and LOC. To satisfy the above equations, the label map can be like this:
G
guosheng 已提交
162

Y
yi.wu 已提交
163 164 165 166 167 168 169
   B-ORG  0
   I-ORG  1
   B-PER  2
   I-PER  3
   B-LOC  4
   I-LOC  5
   O      6
G
guosheng 已提交
170

Y
yi.wu 已提交
171
It's not hard to verify the equations noting that the num of chunk types
Y
yangyaming 已提交
172 173
is 3 and the num of tag types in IOB scheme is 2. For example, the label
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
174
I-LOC is 2, which consistent with the results from the equations.
G
guosheng 已提交
175 176 177 178 179 180 181 182 183 184 185 186
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(chunk_eval, ops::ChunkEvalOp,
                             ops::ChunkEvalOpMaker);
REGISTER_OP_CPU_KERNEL(chunk_eval,
                       ops::ChunkEvalKernel<paddle::platform::CPUPlace, float>);