dropout_impl.cu.h 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
33
#include "paddle/fluid/operators/dropout_impl_util.h"
34
#include "paddle/fluid/operators/dropout_op.h"
35
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
36
#include "paddle/fluid/platform/aligned_vector.h"
37
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
38
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

namespace paddle {
namespace operators {

template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed,
                                const float dropout_prob, const T* src,
                                MaskType* mask, T* dst,
                                bool is_upscale_in_train, uint64_t increment) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

  MaskType mask_val;
  T dst_val;
  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (; idx < n; idx += blockDim.x * gridDim.x) {
    T src_val = src[idx];
#ifdef PADDLE_WITH_HIP
    if (hiprand_uniform(&state) < dropout_prob) {
#else
    if (curand_uniform(&state) < dropout_prob) {
#endif
      mask_val = 0;
      dst_val = 0;
    } else {
      mask_val = 1;
      dst_val = is_upscale_in_train ? src_val * factor : src_val;
    }
    mask[idx] = mask_val;
    dst[idx] = dst_val;
  }
}

template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
                                          uint64_t increment) {
  using LoadT = platform::AlignedVector<T, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

#ifdef PADDLE_WITH_HIP
  int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
    LoadT src_val;
    platform::Load<T, VecSize>(&src[i], &src_val);

#ifdef PADDLE_WITH_HIP
    float4 rand = hiprand_uniform4(&state);
#else
    float4 rand = curand_uniform4(&state);
#endif

    LoadT dst_val;
    MaskLoadT mask_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      if ((&rand.x)[j] < dropout_prob) {
        dst_val[j] = 0;
        mask_val[j] = 0;
      } else {
        dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
        mask_val[j] = 1;
      }
    }

    platform::Store<T, VecSize>(dst_val, &dst[i]);
    platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
  }
}

127 128 129 130 131 132 133 134 135 136 137 138 139
template <typename T, typename MaskType>
struct CudaDropoutGradFunctor {
  explicit CudaDropoutGradFunctor(const T factor) : factor_(factor) {}

  __device__ __forceinline__ T operator()(const T dout,
                                          const MaskType mask) const {
    return dout * static_cast<T>(mask) * factor_;
  }

 private:
  T factor_;
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
                                      const T factor, const int64_t size,
                                      T* dx) {
  using LoadT = platform::AlignedVector<T, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
    LoadT dout_val;
    platform::Load<T, VecSize>(&dout[i], &dout_val);

    MaskLoadT mask_val;
    platform::Load<MaskType, VecSize>(&mask[i], &mask_val);

    LoadT dx_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      dx_val[j] = dout_val[j] * static_cast<T>(mask_val[j]) * factor;
    }

    platform::Store<T, VecSize>(dx_val, &dx[i]);
  }
}

template <typename T>
void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                              bool is_test,
                              const std::string dropout_implementation,
                              float dropout_prob, bool upscale_in_train,
                              bool is_fix_seed, int seed_val, const Tensor& x,
                              const Tensor* seed, Tensor* mask, Tensor* y) {
  auto& place = *dev_ctx.eigen_device();

  if (!is_test) {
    int64_t x_numel = x.numel();
    auto stream = dev_ctx.stream();
    auto* mask_data = mask->data<uint8_t>();
    size_t size = framework::product(mask->dims());

    auto* x_data = x.data<T>();
    auto* y_data = y->data<T>();
    if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
185
      PADDLE_ENFORCE_GPU_SUCCESS(
186
          hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
187
      PADDLE_ENFORCE_GPU_SUCCESS(
188 189
          hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
190
      PADDLE_ENFORCE_GPU_SUCCESS(
191
          cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
192
      PADDLE_ENFORCE_GPU_SUCCESS(
193 194 195 196 197 198 199 200 201 202 203 204 205 206
          cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
      return;
    }

    // increment is used to set the args(offset) of curand_init, which defines
    // offset in subsequence.
    // The detail:
    // https://docs.nvidia.com/cuda/curand/device-api-overview.html
    // Increment should be at least the number of curand() random numbers used
    // in each thread to avoid the random number generated this time being the
    // same as the previous calls.
    uint64_t seed_data;
    uint64_t increment;
Z
Zhang Ting 已提交
207 208 209
    // VectorizedRandomGenerator use curand_uniform4, so we only support
    // vec_size is 4;
    int vec_size = (platform::GetVectorizedSize<T>(x_data) == 4) ? 4 : 1;
210
    auto gpu_config = GetGpuLaunchConfig1D(dev_ctx, x_numel, vec_size);
Z
Zhang Ting 已提交
211
    auto offset =
212
        ((x_numel - 1) / (gpu_config.GetThreadNum() * vec_size) + 1) * vec_size;
213 214 215

    GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset,
                            &seed_data, &increment);
216 217 218 219

#ifdef __HIPCC__
    if (vec_size == 4 && size % 4 == 0) {
      hipLaunchKernelGGL(
220 221 222 223
          HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>),
          gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0, stream, size,
          seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train,
          increment);
224 225
    } else {
      hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>),
226 227 228
                         gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0,
                         stream, size, seed_data, dropout_prob, x_data,
                         mask_data, y_data, upscale_in_train, increment);
229 230 231
    }
#else
    if (vec_size == 4 && size % 4 == 0) {
232 233
      VectorizedRandomGenerator<T, uint8_t, 4><<<
          gpu_config.block_per_grid, gpu_config.thread_per_block, 0, stream>>>(
234 235 236
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    } else {
237 238
      RandomGenerator<T, uint8_t><<<gpu_config.block_per_grid,
                                    gpu_config.thread_per_block, 0, stream>>>(
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    }
#endif
  } else {
    auto X = EigenMatrix<T>::Reshape(x, 1);
    auto Y = EigenMatrix<T>::Reshape(*y, 1);
    if (upscale_in_train) {
      Y.device(place) = X;
    } else {
      Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
    }
  }
}

template <typename T>
void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                                const std::string dropout_implementation,
                                float dropout_prob, const Tensor& grad_y,
                                const Tensor& mask, int64_t size,
259
                                Tensor* grad_x, bool is_test = false) {
260 261 262 263
  auto dX = EigenVector<T>::Flatten(*grad_x);
  auto dY = EigenVector<T>::Flatten(grad_y);

  auto& place = *dev_ctx.eigen_device();
264 265 266
  if (is_test) {
    if (dropout_implementation == "upscale_in_train") {
      dX.device(place) = static_cast<T>(1) * dY;
267
    } else {
268 269 270 271 272 273 274
      dX.device(place) = dY * static_cast<T>(1.0f - dropout_prob);
    }
  } else {
    auto M = EigenVector<uint8_t>::Flatten(mask);
    if (dropout_implementation == "upscale_in_train") {
      if (dropout_prob == 1.0f) {
        dX.device(place) = static_cast<T>(0) * dY;
275
      } else {
276 277 278 279 280 281 282
        auto factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
        auto stream = dev_ctx.stream();
        std::vector<const framework::Tensor*> ins = {&grad_y, &mask};
        std::vector<framework::Tensor*> outs = {grad_x};
        auto functor = CudaDropoutGradFunctor<T, uint8_t>(factor);
        paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(
            dev_ctx, ins, &outs, functor);
283
      }
284 285
    } else {
      dX.device(place) = dY * M.cast<T>();
286 287 288 289 290 291
    }
  }
}

}  // namespace operators
}  // namespace paddle