dropout_impl.cu.h 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
33
#include "paddle/fluid/operators/dropout_impl_util.h"
34 35
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/aligned_vector.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
37
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

namespace paddle {
namespace operators {

template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed,
                                const float dropout_prob, const T* src,
                                MaskType* mask, T* dst,
                                bool is_upscale_in_train, uint64_t increment) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

  MaskType mask_val;
  T dst_val;
  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (; idx < n; idx += blockDim.x * gridDim.x) {
    T src_val = src[idx];
#ifdef PADDLE_WITH_HIP
    if (hiprand_uniform(&state) < dropout_prob) {
#else
    if (curand_uniform(&state) < dropout_prob) {
#endif
      mask_val = 0;
      dst_val = 0;
    } else {
      mask_val = 1;
      dst_val = is_upscale_in_train ? src_val * factor : src_val;
    }
    mask[idx] = mask_val;
    dst[idx] = dst_val;
  }
}

template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
                                          uint64_t increment) {
  using LoadT = platform::AlignedVector<T, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

#ifdef PADDLE_WITH_HIP
  int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
    LoadT src_val;
    platform::Load<T, VecSize>(&src[i], &src_val);

#ifdef PADDLE_WITH_HIP
    float4 rand = hiprand_uniform4(&state);
#else
    float4 rand = curand_uniform4(&state);
#endif

    LoadT dst_val;
    MaskLoadT mask_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      if ((&rand.x)[j] < dropout_prob) {
        dst_val[j] = 0;
        mask_val[j] = 0;
      } else {
        dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
        mask_val[j] = 1;
      }
    }

    platform::Store<T, VecSize>(dst_val, &dst[i]);
    platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
  }
}

template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
                                      const T factor, const int64_t size,
                                      T* dx) {
  using LoadT = platform::AlignedVector<T, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
    LoadT dout_val;
    platform::Load<T, VecSize>(&dout[i], &dout_val);

    MaskLoadT mask_val;
    platform::Load<MaskType, VecSize>(&mask[i], &mask_val);

    LoadT dx_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      dx_val[j] = dout_val[j] * static_cast<T>(mask_val[j]) * factor;
    }

    platform::Store<T, VecSize>(dx_val, &dx[i]);
  }
}

template <typename T>
void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                              bool is_test,
                              const std::string dropout_implementation,
                              float dropout_prob, bool upscale_in_train,
                              bool is_fix_seed, int seed_val, const Tensor& x,
                              const Tensor* seed, Tensor* mask, Tensor* y) {
  auto& place = *dev_ctx.eigen_device();

  if (!is_test) {
    int64_t x_numel = x.numel();
    auto stream = dev_ctx.stream();
    auto* mask_data = mask->data<uint8_t>();
    size_t size = framework::product(mask->dims());

    auto* x_data = x.data<T>();
    auto* y_data = y->data<T>();
    if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
171
      PADDLE_ENFORCE_GPU_SUCCESS(
172
          hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
173
      PADDLE_ENFORCE_GPU_SUCCESS(
174 175
          hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
176
      PADDLE_ENFORCE_GPU_SUCCESS(
177
          cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
178
      PADDLE_ENFORCE_GPU_SUCCESS(
179 180 181 182 183 184 185 186 187 188 189 190 191 192
          cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
      return;
    }

    // increment is used to set the args(offset) of curand_init, which defines
    // offset in subsequence.
    // The detail:
    // https://docs.nvidia.com/cuda/curand/device-api-overview.html
    // Increment should be at least the number of curand() random numbers used
    // in each thread to avoid the random number generated this time being the
    // same as the previous calls.
    uint64_t seed_data;
    uint64_t increment;
Z
Zhang Ting 已提交
193 194 195
    // VectorizedRandomGenerator use curand_uniform4, so we only support
    // vec_size is 4;
    int vec_size = (platform::GetVectorizedSize<T>(x_data) == 4) ? 4 : 1;
196
    int block_size = pten::funcs::GetThreadsConfig(dev_ctx, x_numel, vec_size);
Z
Zhang Ting 已提交
197 198 199 200 201
    int grid_size =
        ((x_numel + vec_size - 1) / vec_size + block_size - 1) / block_size;

    auto offset =
        ((x_numel - 1) / (grid_size * block_size * vec_size) + 1) * vec_size;
202 203 204

    GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset,
                            &seed_data, &increment);
205 206 207 208

#ifdef __HIPCC__
    if (vec_size == 4 && size % 4 == 0) {
      hipLaunchKernelGGL(
Z
Zhang Ting 已提交
209 210 211
          HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>), grid_size,
          block_size, 0, stream, size, seed_data, dropout_prob, x_data,
          mask_data, y_data, upscale_in_train, increment);
212 213
    } else {
      hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>),
Z
Zhang Ting 已提交
214 215 216
                         grid_size, block_size, 0, stream, size, seed_data,
                         dropout_prob, x_data, mask_data, y_data,
                         upscale_in_train, increment);
217 218 219
    }
#else
    if (vec_size == 4 && size % 4 == 0) {
Z
Zhang Ting 已提交
220 221
      VectorizedRandomGenerator<T, uint8_t,
                                4><<<grid_size, block_size, 0, stream>>>(
222 223 224
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    } else {
Z
Zhang Ting 已提交
225
      RandomGenerator<T, uint8_t><<<grid_size, block_size, 0, stream>>>(
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    }
#endif
  } else {
    auto X = EigenMatrix<T>::Reshape(x, 1);
    auto Y = EigenMatrix<T>::Reshape(*y, 1);
    if (upscale_in_train) {
      Y.device(place) = X;
    } else {
      Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
    }
  }
}

template <typename T>
void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                                const std::string dropout_implementation,
                                float dropout_prob, const Tensor& grad_y,
                                const Tensor& mask, int64_t size,
246
                                Tensor* grad_x, bool is_test = false) {
247 248 249 250
  auto dX = EigenVector<T>::Flatten(*grad_x);
  auto dY = EigenVector<T>::Flatten(grad_y);

  auto& place = *dev_ctx.eigen_device();
251 252 253
  if (is_test) {
    if (dropout_implementation == "upscale_in_train") {
      dX.device(place) = static_cast<T>(1) * dY;
254
    } else {
255 256 257 258 259 260 261
      dX.device(place) = dY * static_cast<T>(1.0f - dropout_prob);
    }
  } else {
    auto M = EigenVector<uint8_t>::Flatten(mask);
    if (dropout_implementation == "upscale_in_train") {
      if (dropout_prob == 1.0f) {
        dX.device(place) = static_cast<T>(0) * dY;
262
      } else {
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        int vec_size = platform::GetVectorizedSize<T>(grad_y.data<T>());
        if (vec_size == 4 && size % 4 == 0) {
          auto factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
          auto stream = dev_ctx.stream();
          platform::GpuLaunchConfig config =
              platform::GetGpuLaunchConfig1D(dev_ctx, size);
          DropoutGradCUDAKernel<
              T, uint8_t,
              4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
              grad_y.data<T>(), mask.data<uint8_t>(), factor, size,
              grad_x->data<T>());
        } else {
          dX.device(place) =
              dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob);
        }
278
      }
279 280
    } else {
      dX.device(place) = dY * M.cast<T>();
281 282 283 284 285 286
    }
  }
}

}  // namespace operators
}  // namespace paddle