未验证 提交 c1adced7 编写于 作者: Y YuanRisheng 提交者: GitHub

[Pten]Move GPU_implementation of elementwise kernel in new directory (#38696)

* move gpu_impl of elementwise kernel

* change copyright to 2022
上级 718183f1
......@@ -34,7 +34,7 @@ limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise_no_broadcast.cu.h"
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
namespace paddle {
namespace operators {
......@@ -193,7 +193,7 @@ void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
// VectorizedRandomGenerator use curand_uniform4, so we only support
// vec_size is 4;
int vec_size = (platform::GetVectorizedSize<T>(x_data) == 4) ? 4 : 1;
int block_size = pten::GetThreadsConfig(dev_ctx, x_numel, vec_size);
int block_size = pten::funcs::GetThreadsConfig(dev_ctx, x_numel, vec_size);
int grid_size =
((x_numel + vec_size - 1) / vec_size + block_size - 1) / block_size;
......
......@@ -31,7 +31,7 @@ limitations under the License. */
// only can include the headers in paddle/pten/include dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/kernels/cpu/elementwise_impl.h"
#include "paddle/pten/kernels/cpu/elementwise.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#ifdef __NVCC__
......
......@@ -23,7 +23,7 @@ limitations under the License. */
// only can include the headers in paddle/top/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise.h"
#include "paddle/pten/kernels/gpu/elementwise.h"
namespace paddle {
namespace operators {
......
cc_library(math_cpu SRCS math.cc DEPS dense_tensor kernel_context kernel_factory eigen_function blas pten_transpose_cpu cast_kernel)
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
namespace pten {} // namespace pten
......@@ -18,7 +18,7 @@
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/common/scalar.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/cpu/elementwise_impl.h"
#include "paddle/pten/kernels/cpu/elementwise.h"
#include "paddle/pten/kernels/cpu/reduce.h"
#include "paddle/pten/kernels/funcs/elementwise_functor.h"
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#ifdef __HIPCC__
#define ELEMENTWISE_BLOCK_SIZE 256
#else
#define ELEMENTWISE_BLOCK_SIZE 512
#endif
namespace pten {
namespace funcs {
/*
* According to NVIDIA, if number of threads per block is 64/128/256/512,
* cuda performs better. And number of blocks should be greater (at least
* 2x~4x) than number of SMs. Hence, SM count is took into account within
* this function to determine the right number of threads per block.
*/
inline int GetThreadsConfig(const paddle::platform::CUDADeviceContext &ctx,
int64_t numel,
int vec_size) {
int threads = ELEMENTWISE_BLOCK_SIZE;
int sm_count = ctx.GetSMCount();
int active_threads_num = numel / vec_size;
if (active_threads_num / (sm_count << 1) < ELEMENTWISE_BLOCK_SIZE) {
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about twice of SM, to acquire better performance.
threads = paddle::platform::RoundToPowerOfTwo(active_threads_num /
(sm_count << 1));
} else if (active_threads_num / (sm_count << 2) < ELEMENTWISE_BLOCK_SIZE) {
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about 4 times of SM, to acquire better performance.
threads = paddle::platform::RoundToPowerOfTwo(active_threads_num /
(sm_count << 2));
}
// Number of threads per block shall be larger than 64.
return std::max(64, threads);
}
} // namespace funcs
} // namespace pten
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
......@@ -14,11 +14,309 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/function_traits.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise_common.cu.h"
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
namespace pten {
namespace kps = paddle::operators::kernel_primitives;
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
typename std::conditional_t<Num == 1, T, paddle::framework::Array<T, Num>>;
template <typename InT,
typename OutT,
int VecSize,
typename Functor,
int Arity,
bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result);
};
template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseAny<InT, OutT, VecSize, 1, 1, Arity, Functor>(
result, args, func);
}
};
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseUnary<InT, OutT, VecSize, 1, 1, Functor>(
result, args[0], func);
}
};
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseBinary<InT, OutT, VecSize, 1, 1, Functor>(
result, args[0], args[1], func);
}
};
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseTernary<InT, OutT, VecSize, 1, 1, Functor>(
result, args[0], args[1], args[2], func);
}
};
template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCaller {
__device__ __forceinline__ void operator()(
paddle::framework::Array<OutT *, NumOuts> outs,
ConditionalT<OutT, NumOuts> src[VecSize],
int block_offset,
int num) {
OutT dst[NumOuts][VecSize];
#pragma unroll
for (int i = 0; i < VecSize; ++i) {
#pragma unroll
for (int j = 0; j < NumOuts; ++j) {
dst[j][i] = (src[i])[j];
}
}
#pragma unroll
for (int i = 0; i < NumOuts; ++i) {
kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
outs[i] + block_offset, dst[i], num);
}
}
};
template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, 1> {
__device__ __forceinline__ void operator()(
paddle::framework::Array<OutT *, 1> outs,
OutT src[VecSize],
int block_offset,
int num) {
kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
outs[0] + block_offset, src, num);
}
};
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
const paddle::framework::Array<const InT *__restrict__, Arity> &in,
paddle::framework::Array<OutT *, NumOuts> outs,
int num,
int data_offset,
Functor func) {
InT args[Arity][VecSize];
ConditionalT<OutT, NumOuts> result[VecSize];
#pragma unroll
for (int i = 0; i < Arity; i++) {
kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
kps::ReadData<InT, VecSize, 1, 1, IsBoundary>(
args[i], in[i] + data_offset, num);
}
constexpr bool kCallElementwiseAny =
paddle::platform::FunctionTraits<Functor>::has_pointer_args;
ElementwisePrimitiveCaller<InT,
ConditionalT<OutT, NumOuts>,
VecSize,
Functor,
Arity,
kCallElementwiseAny>()(func, args, result);
ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
outs, result, data_offset, num);
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
__global__ void VectorizedElementwiseKernel(
paddle::framework::Array<const InT *__restrict__, Arity> ins,
paddle::framework::Array<OutT *, NumOuts> outs,
int size,
int main_offset,
Functor func) {
int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
for (; data_offset < main_offset; data_offset += stride) {
VectorizedElementwiseKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
false>(
ins, outs, VecSize * BLOCK_NUM_X, data_offset, func);
}
int num = size - data_offset;
if (num > 0) {
VectorizedElementwiseKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
true>(ins, outs, num, data_offset, func);
}
}
template <typename InT, typename OutT>
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
const std::vector<DenseTensor *> &outs) {
int vec_size = 4;
for (auto iter = ins.begin(); iter != ins.end(); ++iter) {
vec_size = std::min<int>(
vec_size, paddle::platform::GetVectorizedSize((*iter)->data<InT>()));
}
for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
vec_size = std::min<int>(
vec_size, paddle::platform::GetVectorizedSize((*iter)->data<OutT>()));
}
return vec_size;
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
void ElementwiseCudaKernel(const paddle::platform::CUDADeviceContext &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func) {
auto numel = ins[0]->numel();
int block_size = funcs::GetThreadsConfig(ctx, numel, VecSize);
int grid_size =
((numel + VecSize - 1) / VecSize + block_size - 1) / block_size;
auto stream = ctx.stream();
paddle::framework::Array<const InT *__restrict__, Arity> ins_data;
paddle::framework::Array<OutT *, NumOuts> outs_data;
for (int i = 0; i < Arity; ++i) {
ins_data[i] = ins[i]->data<InT>();
}
for (int i = 0; i < NumOuts; ++i) {
outs_data[i] = (*outs)[i]->mutable_data<OutT>();
}
#ifdef PADDLE_WITH_XPU2
block_size = 128;
grid_size = 8;
int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
VectorizedElementwiseKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize><<<grid_size, block_size, 0, stream>>>(
ins_data, outs_data, numel, main_offset, func);
#else
int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
VectorizedElementwiseKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize><<<grid_size, block_size, 0, stream>>>(
ins_data, outs_data, numel, main_offset, func);
#endif
}
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchSameDimsElementwiseCudaKernel(
const paddle::platform::CUDADeviceContext &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func) {
using Traits = paddle::platform::FunctionTraits<Functor>;
const int kArity =
Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
PADDLE_ENFORCE_EQ(ins.size(),
kArity,
paddle::platform::errors::InvalidArgument(
"The number of inputs is expected to be equal to the "
"arity of functor. But recieved: the number of inputs "
"is %d, the arity of functor is %d.",
ins.size(),
kArity));
PADDLE_ENFORCE_EQ(outs->size(),
NumOuts,
paddle::platform::errors::InvalidArgument(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d.",
outs->size(),
NumOuts));
if (NumOuts > 1) {
for (int i = 1; i < NumOuts; ++i) {
PADDLE_ENFORCE_EQ(
(*outs)[i]->dims(),
(*outs)[0]->dims(),
paddle::platform::errors::InvalidArgument(
"The shape of each output tensor shall be identical yet, "
"but %dth output tensor`s shape is not.",
i));
}
}
// calculate the max vec_size for all ins and outs
int vec_size = GetVectorizedSizeForTensors<InT, OutT>(ins, *outs);
switch (vec_size) {
case 4:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 4>(
ctx, ins, outs, func);
break;
case 2:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 2>(
ctx, ins, outs, func);
break;
case 1:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 1>(
ctx, ins, outs, func);
break;
default: {
PADDLE_THROW(paddle::platform::errors::Unimplemented(
"Unsupported vectorized size: %d !", vec_size));
break;
}
}
}
struct DimensionsTransform {
using DimVector = std::vector<int64_t>;
typedef void (*MergeFunctor)(
......@@ -532,4 +830,34 @@ void LaunchBroadcastElementwiseCudaKernel(
}
}
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchElementwiseCudaKernel(
const paddle::platform::CUDADeviceContext &cuda_ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
std::vector<int> dims_size;
bool no_broadcast_flag = true;
for (auto *in : ins) {
no_broadcast_flag &= ins[0]->dims() == in->dims();
dims_size.emplace_back(in->dims().size());
}
if (no_broadcast_flag) {
LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
cuda_ctx, ins, outs, func);
} else {
axis = axis == -1
? *std::max_element(dims_size.begin(), dims_size.end()) -
*std::min_element(dims_size.begin(), dims_size.end())
: axis;
LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
cuda_ctx, ins, outs, axis, func);
}
}
} // namespace pten
......@@ -16,8 +16,8 @@ limitations under the License. */
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/kernels/funcs/elementwise_functor.h"
#include "paddle/pten/kernels/gpu/elementwise.h"
#include "paddle/pten/kernels/gpu/reduce.h"
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise.h"
#ifdef __NVCC__
#include "cub/cub.cuh"
......@@ -30,12 +30,9 @@ namespace cub = hipcub;
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/kernel_registry.h"
namespace kps = paddle::operators::kernel_primitives;
namespace pten {
#define DEFINE_CUDA_ELEMENTWISE_OP(name) \
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise_broadcast.cu.h"
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise_no_broadcast.cu.h"
namespace pten {
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchElementwiseCudaKernel(
const paddle::platform::CUDADeviceContext &cuda_ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
std::vector<int> dims_size;
bool no_broadcast_flag = true;
for (auto *in : ins) {
no_broadcast_flag &= ins[0]->dims() == in->dims();
dims_size.emplace_back(in->dims().size());
}
if (no_broadcast_flag) {
LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
cuda_ctx, ins, outs, func);
} else {
axis = axis == -1
? *std::max_element(dims_size.begin(), dims_size.end()) -
*std::min_element(dims_size.begin(), dims_size.end())
: axis;
LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
cuda_ctx, ins, outs, axis, func);
}
}
} // namespace pten
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/function_traits.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
namespace pten {
namespace kps = paddle::operators::kernel_primitives;
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
typename std::conditional_t<Num == 1, T, paddle::framework::Array<T, Num>>;
template <typename InT,
typename OutT,
int VecSize,
typename Functor,
int Arity,
bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result);
};
template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseAny<InT, OutT, VecSize, 1, 1, Arity, Functor>(
result, args, func);
}
};
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseUnary<InT, OutT, VecSize, 1, 1, Functor>(
result, args[0], func);
}
};
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseBinary<InT, OutT, VecSize, 1, 1, Functor>(
result, args[0], args[1], func);
}
};
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
__device__ inline void operator()(Functor func,
InT (*args)[VecSize],
OutT *result) {
kps::ElementwiseTernary<InT, OutT, VecSize, 1, 1, Functor>(
result, args[0], args[1], args[2], func);
}
};
template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCaller {
__device__ __forceinline__ void operator()(
paddle::framework::Array<OutT *, NumOuts> outs,
ConditionalT<OutT, NumOuts> src[VecSize],
int block_offset,
int num) {
OutT dst[NumOuts][VecSize];
#pragma unroll
for (int i = 0; i < VecSize; ++i) {
#pragma unroll
for (int j = 0; j < NumOuts; ++j) {
dst[j][i] = (src[i])[j];
}
}
#pragma unroll
for (int i = 0; i < NumOuts; ++i) {
kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
outs[i] + block_offset, dst[i], num);
}
}
};
template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, 1> {
__device__ __forceinline__ void operator()(
paddle::framework::Array<OutT *, 1> outs,
OutT src[VecSize],
int block_offset,
int num) {
kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
outs[0] + block_offset, src, num);
}
};
} // namespace pten
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise_common.cu.h"
#ifdef __HIPCC__
#define ELEMENTWISE_BLOCK_SIZE 256
#else
#define ELEMENTWISE_BLOCK_SIZE 512
#endif
namespace pten {
/*
* According to NVIDIA, if number of threads per block is 64/128/256/512,
* cuda performs better. And number of blocks should be greater (at least
* 2x~4x) than number of SMs. Hence, SM count is took into account within
* this function to determine the right number of threads per block.
*/
inline int GetThreadsConfig(const paddle::platform::CUDADeviceContext &ctx,
int64_t numel,
int vec_size) {
int threads = ELEMENTWISE_BLOCK_SIZE;
int sm_count = ctx.GetSMCount();
int active_threads_num = numel / vec_size;
if (active_threads_num / (sm_count << 1) < ELEMENTWISE_BLOCK_SIZE) {
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about twice of SM, to acquire better performance.
threads = paddle::platform::RoundToPowerOfTwo(active_threads_num /
(sm_count << 1));
} else if (active_threads_num / (sm_count << 2) < ELEMENTWISE_BLOCK_SIZE) {
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about 4 times of SM, to acquire better performance.
threads = paddle::platform::RoundToPowerOfTwo(active_threads_num /
(sm_count << 2));
}
// Number of threads per block shall be larger than 64.
return std::max(64, threads);
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
const paddle::framework::Array<const InT *__restrict__, Arity> &in,
paddle::framework::Array<OutT *, NumOuts> outs,
int num,
int data_offset,
Functor func) {
InT args[Arity][VecSize];
ConditionalT<OutT, NumOuts> result[VecSize];
#pragma unroll
for (int i = 0; i < Arity; i++) {
kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
kps::ReadData<InT, VecSize, 1, 1, IsBoundary>(
args[i], in[i] + data_offset, num);
}
constexpr bool kCallElementwiseAny =
paddle::platform::FunctionTraits<Functor>::has_pointer_args;
ElementwisePrimitiveCaller<InT,
ConditionalT<OutT, NumOuts>,
VecSize,
Functor,
Arity,
kCallElementwiseAny>()(func, args, result);
ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
outs, result, data_offset, num);
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
__global__ void VectorizedElementwiseKernel(
paddle::framework::Array<const InT *__restrict__, Arity> ins,
paddle::framework::Array<OutT *, NumOuts> outs,
int size,
int main_offset,
Functor func) {
int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
for (; data_offset < main_offset; data_offset += stride) {
VectorizedElementwiseKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
false>(
ins, outs, VecSize * BLOCK_NUM_X, data_offset, func);
}
int num = size - data_offset;
if (num > 0) {
VectorizedElementwiseKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
true>(ins, outs, num, data_offset, func);
}
}
template <typename InT, typename OutT>
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
const std::vector<DenseTensor *> &outs) {
int vec_size = 4;
for (auto iter = ins.begin(); iter != ins.end(); ++iter) {
vec_size = std::min<int>(
vec_size, paddle::platform::GetVectorizedSize((*iter)->data<InT>()));
}
for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
vec_size = std::min<int>(
vec_size, paddle::platform::GetVectorizedSize((*iter)->data<OutT>()));
}
return vec_size;
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
void ElementwiseCudaKernel(const paddle::platform::CUDADeviceContext &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func) {
auto numel = ins[0]->numel();
int block_size = GetThreadsConfig(ctx, numel, VecSize);
int grid_size =
((numel + VecSize - 1) / VecSize + block_size - 1) / block_size;
auto stream = ctx.stream();
paddle::framework::Array<const InT *__restrict__, Arity> ins_data;
paddle::framework::Array<OutT *, NumOuts> outs_data;
for (int i = 0; i < Arity; ++i) {
ins_data[i] = ins[i]->data<InT>();
}
for (int i = 0; i < NumOuts; ++i) {
outs_data[i] = (*outs)[i]->mutable_data<OutT>();
}
#ifdef PADDLE_WITH_XPU2
block_size = 128;
grid_size = 8;
int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
VectorizedElementwiseKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize><<<grid_size, block_size, 0, stream>>>(
ins_data, outs_data, numel, main_offset, func);
#else
int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
VectorizedElementwiseKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize><<<grid_size, block_size, 0, stream>>>(
ins_data, outs_data, numel, main_offset, func);
#endif
}
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchSameDimsElementwiseCudaKernel(
const paddle::platform::CUDADeviceContext &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func) {
using Traits = paddle::platform::FunctionTraits<Functor>;
const int kArity =
Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
PADDLE_ENFORCE_EQ(ins.size(),
kArity,
paddle::platform::errors::InvalidArgument(
"The number of inputs is expected to be equal to the "
"arity of functor. But recieved: the number of inputs "
"is %d, the arity of functor is %d.",
ins.size(),
kArity));
PADDLE_ENFORCE_EQ(outs->size(),
NumOuts,
paddle::platform::errors::InvalidArgument(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d.",
outs->size(),
NumOuts));
if (NumOuts > 1) {
for (int i = 1; i < NumOuts; ++i) {
PADDLE_ENFORCE_EQ(
(*outs)[i]->dims(),
(*outs)[0]->dims(),
paddle::platform::errors::InvalidArgument(
"The shape of each output tensor shall be identical yet, "
"but %dth output tensor`s shape is not.",
i));
}
}
// calculate the max vec_size for all ins and outs
int vec_size = GetVectorizedSizeForTensors<InT, OutT>(ins, *outs);
switch (vec_size) {
case 4:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 4>(
ctx, ins, outs, func);
break;
case 2:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 2>(
ctx, ins, outs, func);
break;
case 1:
ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 1>(
ctx, ins, outs, func);
break;
default: {
PADDLE_THROW(paddle::platform::errors::Unimplemented(
"Unsupported vectorized size: %d !", vec_size));
break;
}
}
}
} // namespace pten
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/pten/core/dense_tensor.h"
namespace pten {
namespace general {
inline void SetXShape(const DenseTensor& x, DenseTensor* xshape) {
const auto& in_dims = x.meta().dims;
std::vector<int64_t> xshape_dims(in_dims.size() + 1);
xshape_dims[0] = 0;
for (int i = 0; i < in_dims.size(); ++i) {
xshape_dims[i + 1] = in_dims[i];
}
xshape->Resize(paddle::framework::make_ddim(xshape_dims));
xshape->ResetLoD(x.meta().lod);
}
} // namespace general
} // namespace pten
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册