dataset.py 38.1 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
D
dongdaxiang 已提交
20
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
21 22 23


class DatasetFactory(object):
24 25
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
26
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
27 28 29
    the default is "QueueDataset".

    Example:
30 31 32 33 34
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

35
    """
D
dongdaxiang 已提交
36

D
dongdaxiang 已提交
37
    def __init__(self):
38
        """ Init. """
D
dongdaxiang 已提交
39 40
        pass

41
    def create_dataset(self, datafeed_class="QueueDataset"):
42
        """
H
hutuxian 已提交
43
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
44
        the default is "QueueDataset".
D
dongdaxiang 已提交
45

46 47 48 49
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
50
        Examples:
51 52 53 54 55
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

56
        """
D
dongdaxiang 已提交
57 58
        try:
            dataset = globals()[datafeed_class]()
59
            return dataset
D
dongdaxiang 已提交
60 61 62 63 64 65
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
66
    """ Base dataset class. """
D
dongdaxiang 已提交
67

D
dongdaxiang 已提交
68
    def __init__(self):
69
        """ Init. """
D
dongdaxiang 已提交
70 71 72 73
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
74
        self.dataset = core.Dataset("MultiSlotDataset")
75
        self.thread_num = 1
J
jiaqi 已提交
76
        self.filelist = []
77
        self.use_ps_gpu = False
D
dongdaxiang 已提交
78 79 80 81 82 83

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

84 85 86 87 88 89
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
90 91

        Args:
92
            pipe_command(str): pipe command
93

D
dongdaxiang 已提交
94 95 96
        """
        self.proto_desc.pipe_command = pipe_command

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

114 115 116 117 118 119 120 121
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
122
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
159 160 161 162
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

163 164 165 166 167 168
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
169 170

        Args:
171
            batch_size(int): batch size
D
dongdaxiang 已提交
172 173 174 175

        """
        self.proto_desc.batch_size = batch_size

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

192
    def set_thread(self, thread_num):
193 194 195
        """
        Set thread num, it is the num of readers.

196 197 198 199 200 201
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
202 203

        Args:
204
            thread_num(int): thread num
205
        """
206
        self.dataset.set_thread_num(thread_num)
207
        self.thread_num = thread_num
208 209

    def set_filelist(self, filelist):
210 211 212
        """
        Set file list in current worker.

213 214 215 216 217 218
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
219 220

        Args:
221
            filelist(list): file list
222
        """
223
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
224
        self.filelist = filelist
225

226 227 228
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
229
    def set_use_var(self, var_list):
230 231 232
        """
        Set Variables which you will use.

233 234 235 236 237 238
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
239 240

        Args:
241
            var_list(list): variable list
242
        """
243
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
244
        for var in var_list:
245
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
246 247 248 249
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
250
                slot_var.shape.extend(var.shape)
251
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
252
                slot_var.type = "float"
253
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
254 255 256 257 258 259
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

260
    def set_hdfs_config(self, fs_name, fs_ugi):
261 262 263
        """
        Set hdfs config: fs name ad ugi

264 265 266 267 268 269
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
270 271

        Args:
272 273
            fs_name(str): fs name
            fs_ugi(str): fs ugi
274
        """
275 276
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

293
    def _prepare_to_run(self):
294 295 296 297
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
298 299 300
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
301
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
302 303
        self.dataset.create_readers()

304 305 306 307 308 309 310 311 312
    def _set_use_ps_gpu(self, use_ps_gpu):
        """
        set use_ps_gpu flag

        Args:
            use_ps_gpu: bool
        """
        self.use_ps_gpu = use_ps_gpu

J
jiaqi 已提交
313 314
    def _finish_to_run(self):
        self.dataset.destroy_readers()
315

D
dongdaxiang 已提交
316 317 318 319
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

320 321 322 323 324 325
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
326 327 328 329 330 331

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

332 333 334 335 336 337
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
338 339

class InMemoryDataset(DatasetBase):
340 341
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
342 343
    and shuffle data before training.
    This class should be created by DatasetFactory
344 345

    Example:
346
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
347
    """
D
dongdaxiang 已提交
348

349
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
350
    def __init__(self):
351
        """ Init. """
352 353
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
354
        self.fleet_send_batch_size = None
355
        self.is_user_set_queue_num = False
J
jiaqi 已提交
356
        self.queue_num = None
357 358
        self.parse_ins_id = False
        self.parse_content = False
359 360 361
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
362
        self.merge_by_lineid = False
363
        self.fleet_send_sleep_seconds = None
364
        self.trainer_num = -1
J
jiaqi 已提交
365

366 367 368
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_feed_type")
369 370 371 372 373 374
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

375 376 377
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._prepare_to_run")
J
jiaqi 已提交
378 379 380 381 382
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
383
        if self.thread_num <= 0:
384
            self.thread_num = 1
J
jiaqi 已提交
385 386 387 388
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
389 390
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
391 392 393
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
394 395 396 397
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

398 399 400 401
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train"
    )
402 403
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
404 405 406 407
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
408 409
        self.dataset.dynamic_adjust_readers_num(thread_num)

410 411 412 413
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train"
    )
414 415
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
416 417 418 419
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
420 421
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

422 423 424
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_queue_num")
J
jiaqi 已提交
425 426 427 428 429
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
430
            queue_num(int): dataset output queue num
J
jiaqi 已提交
431 432 433 434 435 436 437 438 439

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
440
        self.is_user_set_queue_num = True
J
jiaqi 已提交
441 442
        self.queue_num = queue_num

443 444 445
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id")
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

463 464 465
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_content")
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

517 518 519
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid")
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

609 610 611 612
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size"
    )
613
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
614
        """
615
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
629

630 631 632 633
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds"
    )
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

651 652 653
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid")
654
    def set_merge_by_lineid(self, merge_size=2):
655 656 657 658 659
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
660
            merge_size(int): ins size to merge. default is 2.
661 662 663 664 665 666 667 668 669

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
670
        self.dataset.set_merge_by_lineid(merge_size)
671
        self.merge_by_lineid = True
672
        self.parse_ins_id = True
673

674 675 676 677
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns"
    )
678 679 680 681 682
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

683 684 685 686
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock"
    )
687 688 689 690 691
    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

692 693 694
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.load_into_memory")
695
    def load_into_memory(self):
696 697 698
        """
        Load data into memory

699 700 701 702 703 704 705 706
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
707
        """
708
        self._prepare_to_run()
709
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
710

711 712 713
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory")
714
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
715 716 717
        """
        Load data into memory in async mode

718 719 720
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
721 722 723 724 725 726 727 728 729 730 731
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
732 733 734 735
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
736 737
        self.dataset.preload_into_memory()

738 739 740
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.wait_preload_done")
J
jiaqi 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
756
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
757

758 759 760
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.local_shuffle")
D
dongdaxiang 已提交
761
    def local_shuffle(self):
762 763 764
        """
        Local shuffle

765 766 767 768 769 770 771 772 773
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
774
        """
775
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
776

777 778 779
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.global_shuffle")
780
    def global_shuffle(self, fleet=None, thread_num=12):
781 782
        """
        Global shuffle.
783 784 785
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
786

787
        Examples:
788 789 790 791 792 793 794 795 796
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
797 798

        Args:
799
            fleet(Fleet): fleet singleton. Default None.
800
            thread_num(int): shuffle thread num. Default is 12.
801

802
        """
803
        if fleet is not None:
X
xujiaqi01 已提交
804
            fleet._role_maker.barrier_worker()
805 806
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
807
        if self.fleet_send_batch_size is None:
808 809 810
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
811
        self.dataset.register_client2client_msg_handler()
812
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
813
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
814
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
815
        if fleet is not None:
X
xujiaqi01 已提交
816
            fleet._role_maker.barrier_worker()
817
        self.dataset.global_shuffle(thread_num)
818
        if fleet is not None:
X
xujiaqi01 已提交
819
            fleet._role_maker.barrier_worker()
820 821 822
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
823
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
824

825 826 827
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.release_memory")
828 829
    def release_memory(self):
        """
830 831
        :api_attr: Static Graph
        
832 833
        Release InMemoryDataset memory data, when data will not be used again.

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

849 850
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

876 877 878
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size")
879 880 881 882 883 884 885 886 887 888 889 890 891 892
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

893 894 895 896 897 898 899 900 901 902
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
903 904 905 906 907 908 909

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
910 911
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
912 913 914
            return global_data_size[0]
        return local_data_size[0]

915 916 917
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size")
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

933 934 935 936 937 938 939 940 941 942 943
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
944 945 946 947 948 949 950

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
951 952
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
953 954 955
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
956

D
dongdaxiang 已提交
957
class QueueDataset(DatasetBase):
958 959 960
    """
    QueueDataset, it will process data streamly.

961 962 963 964 965 966
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

967
    """
D
dongdaxiang 已提交
968

D
dongdaxiang 已提交
969
    def __init__(self):
970
        """
D
dongdaxiang 已提交
971 972
        Initialize QueueDataset
        This class should be created by DatasetFactory
973
        """
974
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
975
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
976

977 978 979
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.QueueDataset._prepare_to_run")
980 981 982 983 984 985 986 987 988 989 990 991 992 993
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
994
    def local_shuffle(self):
995
        """
996
        Local shuffle data.
D
dongdaxiang 已提交
997

D
dongdaxiang 已提交
998 999
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1000 1001 1002 1003 1004 1005 1006 1007

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

1008 1009 1010
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

1011
        """
D
dongdaxiang 已提交
1012 1013 1014
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
1015

1016
    def global_shuffle(self, fleet=None):
1017
        """
1018 1019
        Global shuffle data.

D
dongdaxiang 已提交
1020 1021
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1022

1023 1024 1025
        Args:
            fleet(Fleet): fleet singleton. Default None.

1026 1027 1028 1029 1030 1031 1032 1033
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1034 1035 1036
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1037
        """
D
dongdaxiang 已提交
1038 1039 1040
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1041 1042 1043 1044 1045


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1046 1047 1048 1049 1050 1051

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1052 1053 1054 1055
    """

    def __init__(self):
        """
1056 1057
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1058 1059 1060 1061 1062 1063
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1064 1065
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1066 1067 1068 1069 1070 1071 1072 1073
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1074
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1075 1076 1077 1078
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1089
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1090 1091 1092 1093
    """

    def __init__(self):
        """
1094 1095
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1096 1097 1098
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1099
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1100

H
hutuxian 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1110 1111
    def begin_pass(self):
        """
1112
        Begin Pass
H
hutuxian 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1122 1123
        self.boxps.begin_pass()

1124
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1125
        """
1126
        End Pass
H
hutuxian 已提交
1127 1128 1129 1130 1131 1132
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1133
              dataset.end_pass(True)
H
hutuxian 已提交
1134
        """
1135
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1136 1137 1138

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1139
        Wait async preload done
1140
        Wait Until Feed Pass Done
H
hutuxian 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1151 1152 1153 1154
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1165 1166 1167 1168 1169
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1180 1181
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1182 1183 1184 1185 1186

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1187 1188 1189

    def _dynamic_adjust_after_train(self):
        pass
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)