dataset.py 17.8 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
D
dongdaxiang 已提交
18
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
19 20 21


class DatasetFactory(object):
22 23
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
24
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
25 26 27
    the default is "QueueDataset".

    Example:
28 29 30 31 32
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

33
    """
D
dongdaxiang 已提交
34

D
dongdaxiang 已提交
35
    def __init__(self):
36
        """ Init. """
D
dongdaxiang 已提交
37 38
        pass

39
    def create_dataset(self, datafeed_class="QueueDataset"):
40
        """
H
hutuxian 已提交
41
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
42
        the default is "QueueDataset".
D
dongdaxiang 已提交
43

44 45 46 47
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
48
        Examples:
49 50 51 52 53
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

54
        """
D
dongdaxiang 已提交
55 56
        try:
            dataset = globals()[datafeed_class]()
57
            return dataset
D
dongdaxiang 已提交
58 59 60 61 62 63
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
64
    """ Base dataset class. """
D
dongdaxiang 已提交
65

D
dongdaxiang 已提交
66
    def __init__(self):
67
        """ Init. """
D
dongdaxiang 已提交
68 69 70 71
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
72
        self.dataset = core.Dataset("MultiSlotDataset")
73
        self.thread_num = 0
J
jiaqi 已提交
74
        self.filelist = []
D
dongdaxiang 已提交
75 76 77 78 79 80

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

81 82 83 84 85 86
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
87 88

        Args:
89
            pipe_command(str): pipe command
90

D
dongdaxiang 已提交
91 92 93 94 95 96 97
        """
        self.proto_desc.pipe_command = pipe_command

    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

98 99 100 101 102 103
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
104 105

        Args:
106
            batch_size(int): batch size
D
dongdaxiang 已提交
107 108 109 110

        """
        self.proto_desc.batch_size = batch_size

111
    def set_thread(self, thread_num):
112 113 114
        """
        Set thread num, it is the num of readers.

115 116 117 118 119 120
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
121 122

        Args:
123
            thread_num(int): thread num
124
        """
125
        self.dataset.set_thread_num(thread_num)
126
        self.thread_num = thread_num
127 128

    def set_filelist(self, filelist):
129 130 131
        """
        Set file list in current worker.

132 133 134 135 136 137
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
138 139

        Args:
140
            filelist(list): file list
141
        """
142
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
143
        self.filelist = filelist
144

D
dongdaxiang 已提交
145
    def set_use_var(self, var_list):
146 147 148
        """
        Set Variables which you will use.

149 150 151 152 153 154
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
155 156

        Args:
157
            var_list(list): variable list
158
        """
159
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
160
        for var in var_list:
161
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
162 163 164 165
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
166
                slot_var.shape.extend(var.shape)
167
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
168
                slot_var.type = "float"
169
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
170 171 172 173 174 175
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

176
    def set_hdfs_config(self, fs_name, fs_ugi):
177 178 179
        """
        Set hdfs config: fs name ad ugi

180 181 182 183 184 185
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
186 187

        Args:
188 189
            fs_name(str): fs name
            fs_ugi(str): fs ugi
190
        """
191 192
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

193
    def _prepare_to_run(self):
194 195 196 197
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
198 199 200
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
201
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
202 203 204 205
        self.dataset.create_readers()

    def _finish_to_run(self):
        self.dataset.destroy_readers()
206

D
dongdaxiang 已提交
207 208 209 210
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

211 212 213 214 215 216
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
217 218 219 220 221 222 223 224

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)


class InMemoryDataset(DatasetBase):
225 226
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
227 228
    and shuffle data before training.
    This class should be created by DatasetFactory
229 230

    Example:
231
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
232
    """
D
dongdaxiang 已提交
233

D
dongdaxiang 已提交
234
    def __init__(self):
235
        """ Init. """
236 237
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
J
jiaqi 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        self.fleet_send_batch_size = 80000
        self.queue_num = None

    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
            set_queue_num(int): dataset output queue num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
        self.queue_num = queue_num

    def set_fleet_send_batch_size(self, fleet_send_batch_size):
        """
        Set fleet send batch size, default is 80000

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
289 290

    def load_into_memory(self):
291 292 293
        """
        Load data into memory

294 295 296 297 298 299 300 301
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
302
        """
303
        self._prepare_to_run()
304
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
305

J
jiaqi 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    def preload_into_memory(self):
        """
        Load data into memory in async mode

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
        self.dataset.preload_into_memory()

    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()

D
dongdaxiang 已提交
339
    def local_shuffle(self):
340 341 342
        """
        Local shuffle

343 344 345 346 347 348 349 350 351
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
352
        """
353
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
354

355
    def global_shuffle(self, fleet=None):
356 357
        """
        Global shuffle.
358 359 360
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
361

362
        Examples:
363 364 365 366 367 368 369 370 371
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
372 373

        Args:
374 375
            fleet(Fleet): fleet singleton. Default None.

376
        """
377 378
        trainer_num = 1
        if fleet is not None:
379
            fleet._role_maker._barrier_worker()
380
            trainer_num = fleet.worker_num()
381
        self.dataset.register_client2client_msg_handler()
382
        self.dataset.set_trainer_num(trainer_num)
J
jiaqi 已提交
383
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
384
        if fleet is not None:
385
            fleet._role_maker._barrier_worker()
X
xujiaqi01 已提交
386
        self.dataset.global_shuffle()
387
        if fleet is not None:
388
            fleet._role_maker._barrier_worker()
D
dongdaxiang 已提交
389

390 391 392 393
    def release_memory(self):
        """
        Release InMemoryDataset memory data, when data will not be used again.

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

409 410
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

426 427 428 429 430 431 432 433 434 435
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker._node_type_comm.Allreduce(local_data_size,
                                                        global_data_size)
            return global_data_size[0]
        return local_data_size[0]

    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

463 464 465 466 467 468 469 470 471 472 473
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
474 475 476 477 478 479 480 481 482 483 484 485

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker._node_type_comm.Allreduce(local_data_size,
                                                        global_data_size)
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
486

D
dongdaxiang 已提交
487
class QueueDataset(DatasetBase):
488 489 490
    """
    QueueDataset, it will process data streamly.

491 492 493 494 495 496
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

497
    """
D
dongdaxiang 已提交
498

D
dongdaxiang 已提交
499
    def __init__(self):
500
        """
D
dongdaxiang 已提交
501 502
        Initialize QueueDataset
        This class should be created by DatasetFactory
503
        """
504
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
505
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
506 507

    def local_shuffle(self):
508
        """
509
        Local shuffle data.
D
dongdaxiang 已提交
510

D
dongdaxiang 已提交
511 512
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
513 514 515 516 517 518 519 520

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

521
        """
D
dongdaxiang 已提交
522 523 524
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
525

526
    def global_shuffle(self, fleet=None):
527
        """
528 529
        Global shuffle data.

D
dongdaxiang 已提交
530 531
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
532 533 534 535 536 537 538 539 540

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

541
        """
D
dongdaxiang 已提交
542 543 544
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
    Example:
        import paddle.fluid as fluid
        dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
    """

    def __init__(self):
        """
        Init
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
        Local shuffle
        FileInstantDataset does not support local shuffle
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")