dataset.py 24.2 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
D
dongdaxiang 已提交
18
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
19 20 21


class DatasetFactory(object):
22 23
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
24
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
25 26 27
    the default is "QueueDataset".

    Example:
28 29 30 31 32
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

33
    """
D
dongdaxiang 已提交
34

D
dongdaxiang 已提交
35
    def __init__(self):
36
        """ Init. """
D
dongdaxiang 已提交
37 38
        pass

39
    def create_dataset(self, datafeed_class="QueueDataset"):
40
        """
H
hutuxian 已提交
41
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
42
        the default is "QueueDataset".
D
dongdaxiang 已提交
43

44 45 46 47
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
48
        Examples:
49 50 51 52 53
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

54
        """
D
dongdaxiang 已提交
55 56
        try:
            dataset = globals()[datafeed_class]()
57
            return dataset
D
dongdaxiang 已提交
58 59 60 61 62 63
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
64
    """ Base dataset class. """
D
dongdaxiang 已提交
65

D
dongdaxiang 已提交
66
    def __init__(self):
67
        """ Init. """
D
dongdaxiang 已提交
68 69 70 71
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
72
        self.dataset = core.Dataset("MultiSlotDataset")
73
        self.thread_num = 0
J
jiaqi 已提交
74
        self.filelist = []
D
dongdaxiang 已提交
75 76 77 78 79 80

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

81 82 83 84 85 86
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
87 88

        Args:
89
            pipe_command(str): pipe command
90

D
dongdaxiang 已提交
91 92 93
        """
        self.proto_desc.pipe_command = pipe_command

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
            fea_eval(bool): wheather enable fea eval mode to enable slots shuffle.
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
139 140 141 142
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

143 144 145 146 147 148
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
149 150

        Args:
151
            batch_size(int): batch size
D
dongdaxiang 已提交
152 153 154 155

        """
        self.proto_desc.batch_size = batch_size

156
    def set_thread(self, thread_num):
157 158 159
        """
        Set thread num, it is the num of readers.

160 161 162 163 164 165
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
166 167

        Args:
168
            thread_num(int): thread num
169
        """
170
        self.dataset.set_thread_num(thread_num)
171
        self.thread_num = thread_num
172 173

    def set_filelist(self, filelist):
174 175 176
        """
        Set file list in current worker.

177 178 179 180 181 182
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
183 184

        Args:
185
            filelist(list): file list
186
        """
187
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
188
        self.filelist = filelist
189

D
dongdaxiang 已提交
190
    def set_use_var(self, var_list):
191 192 193
        """
        Set Variables which you will use.

194 195 196 197 198 199
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
200 201

        Args:
202
            var_list(list): variable list
203
        """
204
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
205
        for var in var_list:
206
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
207 208 209 210
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
211
                slot_var.shape.extend(var.shape)
212
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
213
                slot_var.type = "float"
214
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
215 216 217 218 219 220
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

221
    def set_hdfs_config(self, fs_name, fs_ugi):
222 223 224
        """
        Set hdfs config: fs name ad ugi

225 226 227 228 229 230
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
231 232

        Args:
233 234
            fs_name(str): fs name
            fs_ugi(str): fs ugi
235
        """
236 237
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

238
    def _prepare_to_run(self):
239 240 241 242
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
243 244 245
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
246
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
247 248 249 250
        self.dataset.create_readers()

    def _finish_to_run(self):
        self.dataset.destroy_readers()
251

D
dongdaxiang 已提交
252 253 254 255
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

256 257 258 259 260 261
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
262 263 264 265 266 267 268 269

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)


class InMemoryDataset(DatasetBase):
270 271
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
272 273
    and shuffle data before training.
    This class should be created by DatasetFactory
274 275

    Example:
276
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
277
    """
D
dongdaxiang 已提交
278

D
dongdaxiang 已提交
279
    def __init__(self):
280
        """ Init. """
281 282
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
283
        self.fleet_send_batch_size = None
J
jiaqi 已提交
284
        self.queue_num = None
285 286
        self.parse_ins_id = False
        self.parse_content = False
287
        self.merge_by_lineid = False
J
jiaqi 已提交
288 289 290 291 292 293 294 295

    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
296 297
        if self.thread_num == 0:
            self.thread_num = 1
J
jiaqi 已提交
298 299 300 301
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
302 303
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
J
jiaqi 已提交
304 305 306 307 308 309 310 311 312
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
313
            queue_num(int): dataset output queue num
J
jiaqi 已提交
314 315 316 317 318 319 320 321 322 323 324

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
        self.queue_num = queue_num

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

J
jiaqi 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    def set_fleet_send_batch_size(self, fleet_send_batch_size):
        """
        Set fleet send batch size, default is 80000

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def set_merge_by_lineid(self,
                            var_list,
                            erase_duplicate_feas=True,
                            min_merge_size=2,
                            keep_unmerged_ins=True):
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
            var_list(list): slots that can be merge. each element in var_list
                            is Variable. some slots such as show and click, we
                            usually don't merge them for same line id, so user
                            should specify which slot can be merged.
            erase_duplicate_feas(bool): whether erase duplicate feasigns when
                                        merge. default is True.
            min_merge_size(int): minimal size to merge. default is 2.
            keep_unmerged_ins(bool): whether to keep unmerged ins, such as
                                     ins with unique id or the num of ins with
                                     same id is less than min_merge_size.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
        var_name_list = [i.name for i in var_list]
        self.dataset.set_merge_by_lineid(var_name_list, erase_duplicate_feas,
                                         min_merge_size, keep_unmerged_ins)
        self.merge_by_lineid = True

410
    def load_into_memory(self):
411 412 413
        """
        Load data into memory

414 415 416 417 418 419 420 421
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
422
        """
423
        self._prepare_to_run()
424
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
425

J
jiaqi 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def preload_into_memory(self):
        """
        Load data into memory in async mode

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
        self.dataset.preload_into_memory()

    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()

D
dongdaxiang 已提交
459
    def local_shuffle(self):
460 461 462
        """
        Local shuffle

463 464 465 466 467 468 469 470 471
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
472
        """
473
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
474

475
    def global_shuffle(self, fleet=None):
476 477
        """
        Global shuffle.
478 479 480
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
481

482
        Examples:
483 484 485 486 487 488 489 490 491
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
492 493

        Args:
494 495
            fleet(Fleet): fleet singleton. Default None.

496
        """
497 498
        trainer_num = 1
        if fleet is not None:
499
            fleet._role_maker._barrier_worker()
500
            trainer_num = fleet.worker_num()
501 502
        if self.fleet_send_batch_size is None:
            self.fleet_send_batch_size = 800 * trainer_num
503
        self.dataset.register_client2client_msg_handler()
504
        self.dataset.set_trainer_num(trainer_num)
J
jiaqi 已提交
505
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
506
        if fleet is not None:
507
            fleet._role_maker._barrier_worker()
X
xujiaqi01 已提交
508
        self.dataset.global_shuffle()
509
        if fleet is not None:
510
            fleet._role_maker._barrier_worker()
511 512 513 514
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
            fleet._role_maker._barrier_worker()
D
dongdaxiang 已提交
515

516 517 518 519
    def release_memory(self):
        """
        Release InMemoryDataset memory data, when data will not be used again.

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

535 536
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

552 553 554 555 556 557 558 559 560 561
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker._node_type_comm.Allreduce(local_data_size,
                                                        global_data_size)
            return global_data_size[0]
        return local_data_size[0]

    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

589 590 591 592 593 594 595 596 597 598 599
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
600 601 602 603 604 605 606 607 608 609 610 611

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker._node_type_comm.Allreduce(local_data_size,
                                                        global_data_size)
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
612

D
dongdaxiang 已提交
613
class QueueDataset(DatasetBase):
614 615 616
    """
    QueueDataset, it will process data streamly.

617 618 619 620 621 622
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

623
    """
D
dongdaxiang 已提交
624

D
dongdaxiang 已提交
625
    def __init__(self):
626
        """
D
dongdaxiang 已提交
627 628
        Initialize QueueDataset
        This class should be created by DatasetFactory
629
        """
630
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
631
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
647
    def local_shuffle(self):
648
        """
649
        Local shuffle data.
D
dongdaxiang 已提交
650

D
dongdaxiang 已提交
651 652
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
653 654 655 656 657 658 659 660

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

661
        """
D
dongdaxiang 已提交
662 663 664
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
665

666
    def global_shuffle(self, fleet=None):
667
        """
668 669
        Global shuffle data.

D
dongdaxiang 已提交
670 671
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
672

673 674 675
        Args:
            fleet(Fleet): fleet singleton. Default None.

676 677 678 679 680 681 682 683
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

684
        """
D
dongdaxiang 已提交
685 686 687
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
688 689 690 691 692


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
693 694 695 696 697 698

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
699 700 701 702 703 704 705 706 707 708 709
    """

    def __init__(self):
        """
        Init
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
710
        Local shuffle, FileInstantDataset does not support local shuffle
H
hutuxian 已提交
711 712 713 714 715 716 717 718 719 720 721 722
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("BoxPSDataset")
    """

    def __init__(self):
        """
        Init
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)

    def begin_pass(self):
        """
	Notify BoxPS to begin next pass
	"""
        self.boxps.begin_pass()

    def end_pass(self):
        """
	Notify BoxPS to end current pass
	"""
        self.boxps.end_pass()

    def wait_preload_done(self):
        """
	Wait async proload done
	"""
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
	Load next pass into memory and notify boxps to fetch its emb from SSD
	"""
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
	begin async preload next pass while current pass may be training
	"""
        self._prepare_to_run()
        self.boxps.preload_into_memory()