yolov3_loss_op.h 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

29
using Array5 = Eigen::DSizes<int64_t, 5>;
30 31 32

template <typename T>
static inline bool isZero(T x) {
D
dengkaipeng 已提交
33
  return fabs(x) < 1e-6;
34 35 36
}

template <typename T>
D
dengkaipeng 已提交
37 38 39 40 41 42 43 44 45 46 47 48
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
  T b1_x1 = box1[0] - box1[2] / 2;
  T b1_x2 = box1[0] + box1[2] / 2;
  T b1_y1 = box1[1] - box1[3] / 2;
  T b1_y2 = box1[1] + box1[3] / 2;
  T b2_x1 = box2[0] - box2[2] / 2;
  T b2_x2 = box2[0] + box2[2] / 2;
  T b2_y1 = box2[1] - box2[3] / 2;
  T b2_y2 = box2[1] + box2[3] / 2;

  T b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1);
  T b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1);
49 50 51 52 53

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
D
dengkaipeng 已提交
54 55
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1, static_cast<T>(0.0)) *
                 std::max(inter_rect_y2 - inter_rect_y1, static_cast<T>(0.0));
56

D
dengkaipeng 已提交
57
  return inter_area / (b1_area + b2_area - inter_area);
58 59 60
}

template <typename T>
D
dengkaipeng 已提交
61 62
static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
                            const float ignore_thresh, std::vector<int> anchors,
63
                            const int input_size, const int grid_size,
64
                            Tensor* conf_mask, Tensor* obj_mask, Tensor* tx,
65 66
                            Tensor* ty, Tensor* tw, Tensor* th, Tensor* tweight,
                            Tensor* tconf, Tensor* tclass) {
D
dengkaipeng 已提交
67 68
  const int n = gt_box.dims()[0];
  const int b = gt_box.dims()[1];
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  const int an_num = anchors.size() / 2;
  const int h = tclass->dims()[2];
  const int w = tclass->dims()[3];
  const int class_num = tclass->dims()[4];

  const T* gt_box_data = gt_box.data<T>();
  const int* gt_label_data = gt_label.data<int>();
  T* conf_mask_data = conf_mask->data<T>();
  T* obj_mask_data = obj_mask->data<T>();
  T* tx_data = tx->data<T>();
  T* ty_data = ty->data<T>();
  T* tw_data = tw->data<T>();
  T* th_data = th->data<T>();
  T* tweight_data = tweight->data<T>();
  T* tconf_data = tconf->data<T>();
  T* tclass_data = tclass->data<T>();
85 86 87

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
88 89 90
      int box_idx = (i * b + j) * 4;
      if (isZero<T>(gt_box_data[box_idx + 2]) &&
          isZero<T>(gt_box_data[box_idx + 3])) {
91 92 93
        continue;
      }

94 95 96 97 98
      int cur_label = gt_label_data[i * b + j];
      T gx = gt_box_data[box_idx] * grid_size;
      T gy = gt_box_data[box_idx + 1] * grid_size;
      T gw = gt_box_data[box_idx + 2] * input_size;
      T gh = gt_box_data[box_idx + 3] * input_size;
99 100 101
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

102
      T max_iou = static_cast<T>(0);
103 104
      T iou;
      int best_an_index = -1;
D
dengkaipeng 已提交
105
      std::vector<T> gt_box_shape({0, 0, gw, gh});
106
      for (int an_idx = 0; an_idx < an_num; an_idx++) {
107 108
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
D
dengkaipeng 已提交
109
        iou = CalcBoxIoU<T>(gt_box_shape, anchor_shape);
110 111 112 113 114
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
115 116
          int conf_idx = ((i * an_num + an_idx) * h + gj) * w + gi;
          conf_mask_data[conf_idx] = static_cast<T>(0.0);
117 118
        }
      }
119 120 121 122 123 124 125 126 127 128 129 130

      int obj_idx = ((i * an_num + best_an_index) * h + gj) * w + gi;
      conf_mask_data[obj_idx] = static_cast<T>(1.0);
      obj_mask_data[obj_idx] = static_cast<T>(1.0);
      tx_data[obj_idx] = gx - gi;
      ty_data[obj_idx] = gy - gj;
      tw_data[obj_idx] = log(gw / anchors[2 * best_an_index]);
      th_data[obj_idx] = log(gh / anchors[2 * best_an_index + 1]);
      tweight_data[obj_idx] =
          2.0 - gt_box_data[box_idx + 2] * gt_box_data[box_idx + 3];
      tconf_data[obj_idx] = static_cast<T>(1.0);
      tclass_data[obj_idx * class_num + cur_label] = static_cast<T>(1.0);
131 132
    }
  }
133 134
}

135
template <typename T>
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

template <typename T>
static void CalcSCE(T* loss_data, const T* input, const T* target,
                    const T* weight, const T* mask, const int n,
                    const int an_num, const int grid_num, const int class_num,
                    const int num) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < grid_num; k++) {
        int sub_idx = k * num;
        for (int l = 0; l < num; l++) {
          loss_data[i] += SCE<T>(input[l * grid_num + k], target[sub_idx + l]) *
                          weight[k] * mask[k];
        }
      }
      input += (class_num + 5) * grid_num;
      target += grid_num * num;
      weight += grid_num;
      mask += grid_num;
    }
  }
}
176

177 178 179 180 181
template <typename T>
static void CalcSCEGrad(T* input_grad, const T* loss_grad, const T* input,
                        const T* target, const T* weight, const T* mask,
                        const int n, const int an_num, const int grid_num,
                        const int class_num, const int num) {
182 183
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
184 185 186 187 188 189
      for (int k = 0; k < grid_num; k++) {
        int sub_idx = k * num;
        for (int l = 0; l < num; l++) {
          input_grad[l * grid_num + k] =
              SCEGrad<T>(input[l * grid_num + k], target[sub_idx + l]) *
              weight[k] * mask[k] * loss_grad[i];
190 191
        }
      }
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
      input_grad += (class_num + 5) * grid_num;
      input += (class_num + 5) * grid_num;
      target += grid_num * num;
      weight += grid_num;
      mask += grid_num;
    }
  }
}

template <typename T>
static void CalcL1Loss(T* loss_data, const T* input, const T* target,
                       const T* weight, const T* mask, const int n,
                       const int an_num, const int grid_num,
                       const int class_num) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < grid_num; k++) {
        loss_data[i] += L1Loss<T>(input[k], target[k]) * weight[k] * mask[k];
      }
      input += (class_num + 5) * grid_num;
      target += grid_num;
      weight += grid_num;
      mask += grid_num;
    }
  }
}

template <typename T>
static void CalcL1LossGrad(T* input_grad, const T* loss_grad, const T* input,
                           const T* target, const T* weight, const T* mask,
                           const int n, const int an_num, const int grid_num,
                           const int class_num) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < grid_num; k++) {
        input_grad[k] = L1LossGrad<T>(input[k], target[k]) * weight[k] *
                        mask[k] * loss_grad[i];
      }
      input_grad += (class_num + 5) * grid_num;
      input += (class_num + 5) * grid_num;
      target += grid_num;
      weight += grid_num;
      mask += grid_num;
235 236 237 238
    }
  }
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
template <typename T>
static void CalcYolov3Loss(T* loss_data, const Tensor& input, const Tensor& tx,
                           const Tensor& ty, const Tensor& tw, const Tensor& th,
                           const Tensor& tweight, const Tensor& tconf,
                           const Tensor& tclass, const Tensor& conf_mask,
                           const Tensor& obj_mask) {
  const T* input_data = input.data<T>();
  const T* tx_data = tx.data<T>();
  const T* ty_data = ty.data<T>();
  const T* tw_data = tw.data<T>();
  const T* th_data = th.data<T>();
  const T* tweight_data = tweight.data<T>();
  const T* tconf_data = tconf.data<T>();
  const T* tclass_data = tclass.data<T>();
  const T* conf_mask_data = conf_mask.data<T>();
  const T* obj_mask_data = obj_mask.data<T>();

  const int n = tclass.dims()[0];
  const int an_num = tclass.dims()[1];
  const int h = tclass.dims()[2];
  const int w = tclass.dims()[3];
  const int class_num = tclass.dims()[4];
  const int grid_num = h * w;

  CalcSCE<T>(loss_data, input_data, tx_data, tweight_data, obj_mask_data, n,
             an_num, grid_num, class_num, 1);
  CalcSCE<T>(loss_data, input_data + grid_num, ty_data, tweight_data,
             obj_mask_data, n, an_num, grid_num, class_num, 1);
  CalcL1Loss<T>(loss_data, input_data + 2 * grid_num, tw_data, tweight_data,
                obj_mask_data, n, an_num, grid_num, class_num);
  CalcL1Loss<T>(loss_data, input_data + 3 * grid_num, th_data, tweight_data,
                obj_mask_data, n, an_num, grid_num, class_num);
  CalcSCE<T>(loss_data, input_data + 4 * grid_num, tconf_data, conf_mask_data,
             conf_mask_data, n, an_num, grid_num, class_num, 1);
  CalcSCE<T>(loss_data, input_data + 5 * grid_num, tclass_data, obj_mask_data,
             obj_mask_data, n, an_num, grid_num, class_num, class_num);
}

template <typename T>
static void CalcYolov3LossGrad(T* input_grad_data, const Tensor& loss_grad,
                               const Tensor& input, const Tensor& tx,
                               const Tensor& ty, const Tensor& tw,
                               const Tensor& th, const Tensor& tweight,
                               const Tensor& tconf, const Tensor& tclass,
                               const Tensor& conf_mask,
                               const Tensor& obj_mask) {
  const T* loss_grad_data = loss_grad.data<T>();
  const T* input_data = input.data<T>();
  const T* tx_data = tx.data<T>();
  const T* ty_data = ty.data<T>();
  const T* tw_data = tw.data<T>();
  const T* th_data = th.data<T>();
  const T* tweight_data = tweight.data<T>();
  const T* tconf_data = tconf.data<T>();
  const T* tclass_data = tclass.data<T>();
  const T* conf_mask_data = conf_mask.data<T>();
  const T* obj_mask_data = obj_mask.data<T>();

  const int n = tclass.dims()[0];
  const int an_num = tclass.dims()[1];
  const int h = tclass.dims()[2];
  const int w = tclass.dims()[3];
  const int class_num = tclass.dims()[4];
  const int grid_num = h * w;

  CalcSCEGrad<T>(input_grad_data, loss_grad_data, input_data, tx_data,
                 tweight_data, obj_mask_data, n, an_num, grid_num, class_num,
                 1);
  CalcSCEGrad<T>(input_grad_data + grid_num, loss_grad_data,
                 input_data + grid_num, ty_data, tweight_data, obj_mask_data, n,
                 an_num, grid_num, class_num, 1);
  CalcL1LossGrad<T>(input_grad_data + 2 * grid_num, loss_grad_data,
                    input_data + 2 * grid_num, tw_data, tweight_data,
                    obj_mask_data, n, an_num, grid_num, class_num);
  CalcL1LossGrad<T>(input_grad_data + 3 * grid_num, loss_grad_data,
                    input_data + 3 * grid_num, th_data, tweight_data,
                    obj_mask_data, n, an_num, grid_num, class_num);
  CalcSCEGrad<T>(input_grad_data + 4 * grid_num, loss_grad_data,
                 input_data + 4 * grid_num, tconf_data, conf_mask_data,
                 conf_mask_data, n, an_num, grid_num, class_num, 1);
  CalcSCEGrad<T>(input_grad_data + 5 * grid_num, loss_grad_data,
                 input_data + 5 * grid_num, tclass_data, obj_mask_data,
                 obj_mask_data, n, an_num, grid_num, class_num, class_num);
}

324
template <typename T>
325 326 327 328
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
329 330
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
331
    auto* loss = ctx.Output<Tensor>("Loss");
332 333
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
334
    int input_size = ctx.Attr<int>("input_size");
335 336 337 338 339 340 341
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

342
    Tensor conf_mask, obj_mask;
343
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
344
    conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
345
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
346 347 348 349
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
350
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
351 352
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
353

354 355 356 357 358 359
    math::SetConstant<platform::CPUDeviceContext, T> constant;
    constant(ctx.template device_context<platform::CPUDeviceContext>(),
             &conf_mask, static_cast<T>(1.0));
    constant(ctx.template device_context<platform::CPUDeviceContext>(),
             &obj_mask, static_cast<T>(0.0));
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tx,
360
             static_cast<T>(0.0));
361
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &ty,
362
             static_cast<T>(0.0));
363
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tw,
364
             static_cast<T>(0.0));
365
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &th,
366
             static_cast<T>(0.0));
367 368 369
    constant(ctx.template device_context<platform::CPUDeviceContext>(),
             &tweight, static_cast<T>(0.0));
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tconf,
370
             static_cast<T>(0.0));
371
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tclass,
372 373
             static_cast<T>(0.0));

374
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
375
                       h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th, &tweight,
376 377
                       &tconf, &tclass);

378 379
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
    memset(loss_data, 0, n * sizeof(T));
380 381
    CalcYolov3Loss<T>(loss_data, *input, tx, ty, tw, th, tweight, tconf, tclass,
                      conf_mask, obj_mask);
382 383 384
  }
};

385
template <typename T>
386 387 388
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
389
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
390 391
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
392 393 394 395
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
396
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
397
    int input_size = ctx.Attr<int>("input_size");
398 399 400 401 402 403 404

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

405
    Tensor conf_mask, obj_mask;
406
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
407
    conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
408
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
409 410 411 412
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
413
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
414 415
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
416

417 418 419 420 421 422
    math::SetConstant<platform::CPUDeviceContext, T> constant;
    constant(ctx.template device_context<platform::CPUDeviceContext>(),
             &conf_mask, static_cast<T>(1.0));
    constant(ctx.template device_context<platform::CPUDeviceContext>(),
             &obj_mask, static_cast<T>(0.0));
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tx,
423
             static_cast<T>(0.0));
424
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &ty,
425
             static_cast<T>(0.0));
426
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tw,
427
             static_cast<T>(0.0));
428
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &th,
429
             static_cast<T>(0.0));
430 431 432
    constant(ctx.template device_context<platform::CPUDeviceContext>(),
             &tweight, static_cast<T>(0.0));
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tconf,
433
             static_cast<T>(0.0));
434
    constant(ctx.template device_context<platform::CPUDeviceContext>(), &tclass,
435 436
             static_cast<T>(0.0));

437
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
438
                       h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th, &tweight,
439 440
                       &tconf, &tclass);

441 442 443 444
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
    CalcYolov3LossGrad<T>(input_grad_data, *loss_grad, *input, tx, ty, tw, th,
                          tweight, tconf, tclass, conf_mask, obj_mask);
445 446 447 448 449
  }
};

}  // namespace operators
}  // namespace paddle