yolov3_loss_op.h 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

28
using Array5 = Eigen::DSizes<int64_t, 5>;
29 30 31

template <typename T>
static inline bool isZero(T x) {
D
dengkaipeng 已提交
32
  return fabs(x) < 1e-6;
33 34 35
}

template <typename T>
36 37 38 39 40 41
static inline T CalcMSEWithWeight(const Tensor& x, const Tensor& y,
                                  const Tensor& weight, const T mf) {
  int numel = static_cast<int>(x.numel());
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();
42

43 44 45 46 47 48
  T error_sum = 0.0;
  for (int i = 0; i < numel; i++) {
    T xi = x_data[i];
    T yi = y_data[i];
    T weighti = weight_data[i];
    error_sum += pow(yi - xi, 2) * weighti;
49
  }
50 51

  return error_sum / mf;
52 53
}

54
template <typename T>
55 56 57 58 59 60 61 62 63 64 65
static void CalcMSEGradWithWeight(Tensor* grad, const Tensor& x,
                                  const Tensor& y, const Tensor& weight,
                                  const T mf) {
  int numel = static_cast<int>(grad->numel());
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();

  for (int i = 0; i < numel; i++) {
    grad_data[i] = 2.0 * weight_data[i] * (x_data[i] - y_data[i]) / mf;
D
dengkaipeng 已提交
66
  }
67 68
}

69
template <typename T>
70 71 72 73 74 75
struct SigmoidCrossEntropyForward {
  T operator()(const T& x, const T& label) const {
    T term1 = (x > 0) ? x : 0;
    T term2 = x * label;
    T term3 = std::log(static_cast<T>(1.0) + std::exp(-(std::abs(x))));
    return term1 - term2 + term3;
76
  }
77
};
78

79
template <typename T>
80 81 82 83 84 85 86
struct SigmoidCrossEntropyBackward {
  T operator()(const T& x, const T& label) const {
    T sigmoid_x =
        static_cast<T>(1.0) / (static_cast<T>(1.0) + std::exp(-1.0 * x));
    return sigmoid_x - label;
  }
};
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
template <typename T>
static inline T CalcSCEWithWeight(const Tensor& x, const Tensor& labels,
                                  const Tensor& weight, const T mf) {
  int numel = x.numel();
  const T* x_data = x.data<T>();
  const T* labels_data = labels.data<T>();
  const T* weight_data = weight.data<T>();

  T loss = 0.0;
  for (int i = 0; i < numel; i++) {
    T xi = x_data[i];
    T labeli = labels_data[i];
    T weighti = weight_data[i];
    loss += ((xi > 0.0 ? xi : 0.0) - xi * labeli +
             std::log(1.0 + std::exp(-1.0 * std::abs(xi)))) *
            weighti;
D
dengkaipeng 已提交
104
  }
105
  return loss / mf;
106 107 108
}

template <typename T>
109 110 111 112 113 114 115 116 117 118 119 120
static inline void CalcSCEGradWithWeight(Tensor* grad, const Tensor& x,
                                         const Tensor& labels,
                                         const Tensor& weight, const T mf) {
  int numel = grad->numel();
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
  const T* labels_data = labels.data<T>();
  const T* weight_data = weight.data<T>();

  for (int i = 0; i < numel; i++) {
    grad_data[i] = (1.0 / (1.0 + std::exp(-1.0 * x_data[i])) - labels_data[i]) *
                   weight_data[i] / mf;
121 122 123 124 125 126 127 128
  }
}

template <typename T>
static void CalcPredResult(const Tensor& input, Tensor* pred_conf,
                           Tensor* pred_class, Tensor* pred_x, Tensor* pred_y,
                           Tensor* pred_w, Tensor* pred_h, const int anchor_num,
                           const int class_num) {
129 130 131 132 133 134
  const int n = input.dims()[0];
  const int h = input.dims()[2];
  const int w = input.dims()[3];
  const int box_attr_num = 5 + class_num;

  auto input_t = EigenTensor<T, 4>::From(input);
135 136
  auto pred_conf_t = EigenTensor<T, 4>::From(*pred_conf);
  auto pred_class_t = EigenTensor<T, 5>::From(*pred_class);
137 138 139 140 141 142 143 144 145
  auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
  auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
  auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);

  for (int i = 0; i < n; i++) {
    for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
      for (int j = 0; j < h; j++) {
        for (int k = 0; k < w; k++) {
146
          pred_x_t(i, an_idx, j, k) = input_t(i, box_attr_num * an_idx, j, k);
147
          pred_y_t(i, an_idx, j, k) =
148
              input_t(i, box_attr_num * an_idx + 1, j, k);
149
          pred_w_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
150
              input_t(i, box_attr_num * an_idx + 2, j, k);
151
          pred_h_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
152
              input_t(i, box_attr_num * an_idx + 3, j, k);
153

154
          pred_conf_t(i, an_idx, j, k) =
155
              input_t(i, box_attr_num * an_idx + 4, j, k);
156 157

          for (int c = 0; c < class_num; c++) {
158
            pred_class_t(i, an_idx, j, k, c) =
159
                input_t(i, box_attr_num * an_idx + 5 + c, j, k);
160 161 162 163 164 165 166 167
          }
        }
      }
    }
  }
}

template <typename T>
D
dengkaipeng 已提交
168 169 170 171 172 173 174 175 176 177 178 179
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
  T b1_x1 = box1[0] - box1[2] / 2;
  T b1_x2 = box1[0] + box1[2] / 2;
  T b1_y1 = box1[1] - box1[3] / 2;
  T b1_y2 = box1[1] + box1[3] / 2;
  T b2_x1 = box2[0] - box2[2] / 2;
  T b2_x2 = box2[0] + box2[2] / 2;
  T b2_y1 = box2[1] - box2[3] / 2;
  T b2_y2 = box2[1] + box2[3] / 2;

  T b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1);
  T b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1);
180 181 182 183 184

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
D
dengkaipeng 已提交
185 186
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1, static_cast<T>(0.0)) *
                 std::max(inter_rect_y2 - inter_rect_y1, static_cast<T>(0.0));
187

D
dengkaipeng 已提交
188
  return inter_area / (b1_area + b2_area - inter_area);
189 190 191
}

template <typename T>
D
dengkaipeng 已提交
192 193
static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
                            const float ignore_thresh, std::vector<int> anchors,
194 195 196 197
                            const int input_size, const int grid_size,
                            Tensor* obj_mask, Tensor* noobj_mask, Tensor* tx,
                            Tensor* ty, Tensor* tw, Tensor* th, Tensor* tweight,
                            Tensor* tconf, Tensor* tclass) {
D
dengkaipeng 已提交
198 199
  const int n = gt_box.dims()[0];
  const int b = gt_box.dims()[1];
200
  const int anchor_num = anchors.size() / 2;
D
dengkaipeng 已提交
201 202
  auto gt_box_t = EigenTensor<T, 3>::From(gt_box);
  auto gt_label_t = EigenTensor<int, 2>::From(gt_label);
203 204
  auto obj_mask_t = EigenTensor<T, 4>::From(*obj_mask).setConstant(0);
  auto noobj_mask_t = EigenTensor<T, 4>::From(*noobj_mask).setConstant(1);
205 206 207 208
  auto tx_t = EigenTensor<T, 4>::From(*tx).setConstant(0.0);
  auto ty_t = EigenTensor<T, 4>::From(*ty).setConstant(0.0);
  auto tw_t = EigenTensor<T, 4>::From(*tw).setConstant(0.0);
  auto th_t = EigenTensor<T, 4>::From(*th).setConstant(0.0);
209
  auto tweight_t = EigenTensor<T, 4>::From(*tweight).setConstant(0.0);
210 211 212 213 214
  auto tconf_t = EigenTensor<T, 4>::From(*tconf).setConstant(0.0);
  auto tclass_t = EigenTensor<T, 5>::From(*tclass).setConstant(0.0);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
D
dengkaipeng 已提交
215 216
      if (isZero<T>(gt_box_t(i, j, 0)) && isZero<T>(gt_box_t(i, j, 1)) &&
          isZero<T>(gt_box_t(i, j, 2)) && isZero<T>(gt_box_t(i, j, 3))) {
217 218 219
        continue;
      }

D
dengkaipeng 已提交
220 221 222
      int cur_label = gt_label_t(i, j);
      T gx = gt_box_t(i, j, 0) * grid_size;
      T gy = gt_box_t(i, j, 1) * grid_size;
223 224
      T gw = gt_box_t(i, j, 2) * input_size;
      T gh = gt_box_t(i, j, 3) * input_size;
225 226 227
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

228
      T max_iou = static_cast<T>(0);
229 230
      T iou;
      int best_an_index = -1;
D
dengkaipeng 已提交
231
      std::vector<T> gt_box_shape({0, 0, gw, gh});
232 233 234
      for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
D
dengkaipeng 已提交
235
        iou = CalcBoxIoU<T>(gt_box_shape, anchor_shape);
236 237 238 239 240
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
241
          noobj_mask_t(i, an_idx, gj, gi) = static_cast<T>(0.0);
242 243
        }
      }
244 245
      obj_mask_t(i, best_an_index, gj, gi) = static_cast<T>(1.0);
      noobj_mask_t(i, best_an_index, gj, gi) = static_cast<T>(0.0);
246 247
      tx_t(i, best_an_index, gj, gi) = gx - gi;
      ty_t(i, best_an_index, gj, gi) = gy - gj;
D
dengkaipeng 已提交
248 249
      tw_t(i, best_an_index, gj, gi) = log(gw / anchors[2 * best_an_index]);
      th_t(i, best_an_index, gj, gi) = log(gh / anchors[2 * best_an_index + 1]);
250 251
      tweight_t(i, best_an_index, gj, gi) =
          2.0 - gt_box_t(i, j, 2) * gt_box_t(i, j, 3);
D
dengkaipeng 已提交
252
      tclass_t(i, best_an_index, gj, gi, cur_label) = 1;
253
      tconf_t(i, best_an_index, gj, gi) = 1;
254 255
    }
  }
256 257 258 259 260 261 262 263 264 265 266 267 268 269
}

static void ExpandObjMaskByClassNum(Tensor* obj_mask_expand,
                                    const Tensor& obj_mask) {
  const int n = obj_mask_expand->dims()[0];
  const int an_num = obj_mask_expand->dims()[1];
  const int h = obj_mask_expand->dims()[2];
  const int w = obj_mask_expand->dims()[3];
  const int class_num = obj_mask_expand->dims()[4];
  auto obj_mask_expand_t = EigenTensor<int, 5>::From(*obj_mask_expand);
  auto obj_mask_t = EigenTensor<int, 4>::From(obj_mask);

  obj_mask_expand_t = obj_mask_t.reshape(Array5(n, an_num, h, w, 1))
                          .broadcast(Array5(1, 1, 1, 1, class_num));
270 271
}

272 273 274 275 276
template <typename T>
static void AddAllGradToInputGrad(
    Tensor* grad, T loss, const Tensor& pred_x, const Tensor& pred_y,
    const Tensor& pred_conf, const Tensor& pred_class, const Tensor& grad_x,
    const Tensor& grad_y, const Tensor& grad_w, const Tensor& grad_h,
D
dengkaipeng 已提交
277 278 279 280
    const Tensor& grad_conf_target, const Tensor& grad_conf_notarget,
    const Tensor& grad_class, const int class_num, const float loss_weight_xy,
    const float loss_weight_wh, const float loss_weight_conf_target,
    const float loss_weight_conf_notarget, const float loss_weight_class) {
281 282 283 284 285 286 287 288 289 290 291 292 293 294
  const int n = pred_x.dims()[0];
  const int an_num = pred_x.dims()[1];
  const int h = pred_x.dims()[2];
  const int w = pred_x.dims()[3];
  const int attr_num = class_num + 5;
  auto grad_t = EigenTensor<T, 4>::From(*grad).setConstant(0.0);
  auto pred_x_t = EigenTensor<T, 4>::From(pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(pred_y);
  auto pred_conf_t = EigenTensor<T, 4>::From(pred_conf);
  auto pred_class_t = EigenTensor<T, 5>::From(pred_class);
  auto grad_x_t = EigenTensor<T, 4>::From(grad_x);
  auto grad_y_t = EigenTensor<T, 4>::From(grad_y);
  auto grad_w_t = EigenTensor<T, 4>::From(grad_w);
  auto grad_h_t = EigenTensor<T, 4>::From(grad_h);
D
dengkaipeng 已提交
295 296
  auto grad_conf_target_t = EigenTensor<T, 4>::From(grad_conf_target);
  auto grad_conf_notarget_t = EigenTensor<T, 4>::From(grad_conf_notarget);
297 298 299 300 301 302
  auto grad_class_t = EigenTensor<T, 5>::From(grad_class);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
303
          grad_t(i, j * attr_num, k, l) =
304
              grad_x_t(i, j, k, l) * loss * loss_weight_xy;
305
          grad_t(i, j * attr_num + 1, k, l) =
306
              grad_y_t(i, j, k, l) * loss * loss_weight_xy;
D
dengkaipeng 已提交
307
          grad_t(i, j * attr_num + 2, k, l) =
D
dengkaipeng 已提交
308
              grad_w_t(i, j, k, l) * loss * loss_weight_wh;
D
dengkaipeng 已提交
309
          grad_t(i, j * attr_num + 3, k, l) =
D
dengkaipeng 已提交
310
              grad_h_t(i, j, k, l) * loss * loss_weight_wh;
311
          grad_t(i, j * attr_num + 4, k, l) =
312
              grad_conf_target_t(i, j, k, l) * loss * loss_weight_conf_target;
313
          grad_t(i, j * attr_num + 4, k, l) +=
314
              grad_conf_notarget_t(i, j, k, l) * loss *
D
dengkaipeng 已提交
315
              loss_weight_conf_notarget;
316 317 318

          for (int c = 0; c < class_num; c++) {
            grad_t(i, j * attr_num + 5 + c, k, l) =
319
                grad_class_t(i, j, k, l, c) * loss * loss_weight_class;
320 321 322 323 324 325 326
          }
        }
      }
    }
  }
}

327
template <typename T>
328 329 330 331
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
332 333
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
334
    auto* loss = ctx.Output<Tensor>("Loss");
335 336
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
337
    int input_size = ctx.Attr<int>("input_size");
338
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
D
dengkaipeng 已提交
339 340 341 342 343 344
    float loss_weight_xy = ctx.Attr<float>("loss_weight_xy");
    float loss_weight_wh = ctx.Attr<float>("loss_weight_wh");
    float loss_weight_conf_target = ctx.Attr<float>("loss_weight_conf_target");
    float loss_weight_conf_notarget =
        ctx.Attr<float>("loss_weight_conf_notarget");
    float loss_weight_class = ctx.Attr<float>("loss_weight_class");
345 346 347 348 349 350 351

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

    Tensor pred_x, pred_y, pred_w, pred_h;
352
    Tensor pred_conf, pred_class;
353 354 355 356
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
357 358 359 360
    pred_conf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
    CalcPredResult<T>(*input, &pred_conf, &pred_class, &pred_x, &pred_y,
                      &pred_w, &pred_h, an_num, class_num);
361

D
dengkaipeng 已提交
362
    Tensor obj_mask, noobj_mask;
363 364 365
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
366 367 368 369
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
370
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
371 372
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
373 374 375 376 377 378 379 380 381 382
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
                       h, &obj_mask, &noobj_mask, &tx, &ty, &tw, &th, &tweight,
                       &tconf, &tclass);

    Tensor obj_weight;
    obj_weight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    auto obj_weight_t = EigenTensor<T, 4>::From(obj_weight);
    auto obj_mask_t = EigenTensor<T, 4>::From(obj_mask);
    auto tweight_t = EigenTensor<T, 4>::From(tweight);
    obj_weight_t = obj_mask_t * tweight_t;
D
dengkaipeng 已提交
383

384
    Tensor obj_mask_expand;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    obj_mask_expand.mutable_data<T>({n, an_num, h, w, class_num},
                                    ctx.GetPlace());
    auto obj_mask_expand_t = EigenTensor<T, 5>::From(obj_mask_expand);
    obj_mask_expand_t = obj_mask_t.reshape(Array5(n, an_num, h, w, 1))
                            .broadcast(Array5(1, 1, 1, 1, class_num));

    T box_f = static_cast<T>(an_num * h * w);
    T class_f = static_cast<T>(an_num * h * w * class_num);
    T loss_x = CalcSCEWithWeight<T>(pred_x, tx, obj_weight, box_f);
    T loss_y = CalcSCEWithWeight<T>(pred_y, ty, obj_weight, box_f);
    T loss_w = CalcMSEWithWeight<T>(pred_w, tw, obj_weight, box_f);
    T loss_h = CalcMSEWithWeight<T>(pred_h, th, obj_weight, box_f);
    T loss_conf_target =
        CalcSCEWithWeight<T>(pred_conf, tconf, obj_mask, box_f);
    T loss_conf_notarget =
        CalcSCEWithWeight<T>(pred_conf, tconf, noobj_mask, box_f);
    T loss_class =
        CalcSCEWithWeight<T>(pred_class, tclass, obj_mask_expand, class_f);
D
dengkaipeng 已提交
403 404

    auto* loss_data = loss->mutable_data<T>({1}, ctx.GetPlace());
D
dengkaipeng 已提交
405 406 407 408 409
    loss_data[0] = loss_weight_xy * (loss_x + loss_y) +
                   loss_weight_wh * (loss_w + loss_h) +
                   loss_weight_conf_target * loss_conf_target +
                   loss_weight_conf_notarget * loss_conf_notarget +
                   loss_weight_class * loss_class;
410 411 412
  }
};

413
template <typename T>
414 415 416
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
417
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
418 419
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
420 421 422 423 424 425
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
    const T loss = output_grad->data<T>()[0];
426
    int input_size = ctx.Attr<int>("input_size");
D
dengkaipeng 已提交
427 428 429 430 431 432
    float loss_weight_xy = ctx.Attr<float>("loss_weight_xy");
    float loss_weight_wh = ctx.Attr<float>("loss_weight_wh");
    float loss_weight_conf_target = ctx.Attr<float>("loss_weight_conf_target");
    float loss_weight_conf_notarget =
        ctx.Attr<float>("loss_weight_conf_notarget");
    float loss_weight_class = ctx.Attr<float>("loss_weight_class");
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

    Tensor pred_x, pred_y, pred_w, pred_h;
    Tensor pred_conf, pred_class;
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_conf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
    CalcPredResult<T>(*input, &pred_conf, &pred_class, &pred_x, &pred_y,
                      &pred_w, &pred_h, an_num, class_num);

    Tensor obj_mask, noobj_mask;
452 453 454
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
455 456 457 458
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
459
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
460 461
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
462 463 464 465 466 467 468 469 470 471
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
                       h, &obj_mask, &noobj_mask, &tx, &ty, &tw, &th, &tweight,
                       &tconf, &tclass);

    Tensor obj_weight;
    obj_weight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    auto obj_weight_t = EigenTensor<T, 4>::From(obj_weight);
    auto obj_mask_t = EigenTensor<T, 4>::From(obj_mask);
    auto tweight_t = EigenTensor<T, 4>::From(tweight);
    obj_weight_t = obj_mask_t * tweight_t;
472 473

    Tensor obj_mask_expand;
474 475 476 477 478
    obj_mask_expand.mutable_data<T>({n, an_num, h, w, class_num},
                                    ctx.GetPlace());
    auto obj_mask_expand_t = EigenTensor<T, 5>::From(obj_mask_expand);
    obj_mask_expand_t = obj_mask_t.reshape(Array5(n, an_num, h, w, 1))
                            .broadcast(Array5(1, 1, 1, 1, class_num));
479 480

    Tensor grad_x, grad_y, grad_w, grad_h;
D
dengkaipeng 已提交
481
    Tensor grad_conf_target, grad_conf_notarget, grad_class;
482 483 484 485
    grad_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
D
dengkaipeng 已提交
486 487
    grad_conf_target.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_conf_notarget.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
488
    grad_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
489 490 491 492 493 494 495 496 497 498 499 500
    T box_f = static_cast<T>(an_num * h * w);
    T class_f = static_cast<T>(an_num * h * w * class_num);
    CalcSCEGradWithWeight<T>(&grad_x, pred_x, tx, obj_weight, box_f);
    CalcSCEGradWithWeight<T>(&grad_y, pred_y, ty, obj_weight, box_f);
    CalcMSEGradWithWeight<T>(&grad_w, pred_w, tw, obj_weight, box_f);
    CalcMSEGradWithWeight<T>(&grad_h, pred_h, th, obj_weight, box_f);
    CalcSCEGradWithWeight<T>(&grad_conf_target, pred_conf, tconf, obj_mask,
                             box_f);
    CalcSCEGradWithWeight<T>(&grad_conf_notarget, pred_conf, tconf, noobj_mask,
                             box_f);
    CalcSCEGradWithWeight<T>(&grad_class, pred_class, tclass, obj_mask_expand,
                             class_f);
501 502 503 504

    input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
    AddAllGradToInputGrad<T>(
        input_grad, loss, pred_x, pred_y, pred_conf, pred_class, grad_x, grad_y,
D
dengkaipeng 已提交
505 506 507
        grad_w, grad_h, grad_conf_target, grad_conf_notarget, grad_class,
        class_num, loss_weight_xy, loss_weight_wh, loss_weight_conf_target,
        loss_weight_conf_notarget, loss_weight_class);
508 509 510 511 512
  }
};

}  // namespace operators
}  // namespace paddle