yolov3_loss_op.h 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

28
using Array5 = Eigen::DSizes<int64_t, 5>;
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

template <typename T>
static inline bool isZero(T x) {
  return abs(x) < 1e-6;
}

template <typename T>
static inline T sigmod(T x) {
  return 1.0 / (exp(-1.0 * x) + 1.0);
}

template <typename T>
static inline T CalcMSEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
45
  auto mask_t = EigenVector<int>::Flatten(mask);
D
dengkaipeng 已提交
46 47 48 49 50 51 52 53 54 55

  T error_sum = 0.0;
  T points = 0.0;
  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      error_sum += pow(x_t(i) - y_t(i), 2);
      points += 1;
    }
  }
  return (error_sum / points);
56 57 58 59 60 61 62
}

template <typename T>
static inline T CalcBCEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
63
  auto mask_t = EigenVector<int>::Flatten(mask);
64

D
dengkaipeng 已提交
65 66 67 68 69 70 71 72 73 74
  T error_sum = 0.0;
  T points = 0.0;
  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      error_sum +=
          -1.0 * (y_t(i) * log(x_t(i)) + (1.0 - y_t(i)) * log(1.0 - x_t(i)));
      points += 1;
    }
  }
  return (error_sum / points);
75 76 77
}

template <typename T>
D
dengkaipeng 已提交
78 79 80 81 82
static void CalcPredResult(const Tensor& input, Tensor* pred_confs,
                           Tensor* pred_classes, Tensor* pred_x, Tensor* pred_y,
                           Tensor* pred_w, Tensor* pred_h,
                           std::vector<int> anchors, const int class_num,
                           const int stride) {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int h = input.dims()[2];
  const int w = input.dims()[3];
  const int anchor_num = anchors.size() / 2;
  const int box_attr_num = 5 + class_num;

  auto input_t = EigenTensor<T, 4>::From(input);
  auto pred_confs_t = EigenTensor<T, 4>::From(*pred_confs);
  auto pred_classes_t = EigenTensor<T, 5>::From(*pred_classes);
  auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
  auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
  auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);

  for (int i = 0; i < n; i++) {
    for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
      float an_w = anchors[an_idx * 2] / stride;
      float an_h = anchors[an_idx * 2 + 1] / stride;

      for (int j = 0; j < h; j++) {
        for (int k = 0; k < w; k++) {
          pred_x_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx, j, k));
          pred_y_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 1, j, k));
          pred_w_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
110
              input_t(i, box_attr_num * an_idx + 2, j, k);
111
          pred_h_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
112
              input_t(i, box_attr_num * an_idx + 3, j, k);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

          pred_confs_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 4, j, k));

          for (int c = 0; c < class_num; c++) {
            pred_classes_t(i, an_idx, j, k, c) =
                sigmod(input_t(i, box_attr_num * an_idx + 5 + c, j, k));
          }
        }
      }
    }
  }
}

template <typename T>
D
dengkaipeng 已提交
128 129 130 131 132 133 134 135 136 137 138 139
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
  T b1_x1 = box1[0] - box1[2] / 2;
  T b1_x2 = box1[0] + box1[2] / 2;
  T b1_y1 = box1[1] - box1[3] / 2;
  T b1_y2 = box1[1] + box1[3] / 2;
  T b2_x1 = box2[0] - box2[2] / 2;
  T b2_x2 = box2[0] + box2[2] / 2;
  T b2_y1 = box2[1] - box2[3] / 2;
  T b2_y2 = box2[1] + box2[3] / 2;

  T b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1);
  T b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1);
140 141 142 143 144

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
D
dengkaipeng 已提交
145 146
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1, static_cast<T>(0.0)) *
                 std::max(inter_rect_y2 - inter_rect_y1, static_cast<T>(0.0));
147

D
dengkaipeng 已提交
148
  return inter_area / (b1_area + b2_area - inter_area);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
}

template <typename T>
static inline int GetPredLabel(const Tensor& pred_classes, int n,
                               int best_an_index, int gj, int gi) {
  auto pred_classes_t = EigenTensor<T, 5>::From(pred_classes);
  T score = 0.0;
  int label = -1;
  for (int i = 0; i < pred_classes.dims()[4]; i++) {
    if (pred_classes_t(n, best_an_index, gj, gi, i) > score) {
      score = pred_classes_t(n, best_an_index, gj, gi, i);
      label = i;
    }
  }
  return label;
}

template <typename T>
D
dengkaipeng 已提交
167 168 169 170 171 172
static void PrePorcessGTBox(const Tensor& gt_boxes, const float ignore_thresh,
                            std::vector<int> anchors, const int img_height,
                            const int grid_size, Tensor* obj_mask,
                            Tensor* noobj_mask, Tensor* tx, Tensor* ty,
                            Tensor* tw, Tensor* th, Tensor* tconf,
                            Tensor* tclass) {
173 174 175 176
  const int n = gt_boxes.dims()[0];
  const int b = gt_boxes.dims()[1];
  const int anchor_num = anchors.size() / 2;
  auto gt_boxes_t = EigenTensor<T, 3>::From(gt_boxes);
D
dengkaipeng 已提交
177 178
  auto obj_mask_t = EigenTensor<int, 4>::From(*obj_mask).setConstant(0);
  auto noobj_mask_t = EigenTensor<int, 4>::From(*noobj_mask).setConstant(1);
179 180 181 182 183 184 185 186 187 188 189 190 191 192
  auto tx_t = EigenTensor<T, 4>::From(*tx).setConstant(0.0);
  auto ty_t = EigenTensor<T, 4>::From(*ty).setConstant(0.0);
  auto tw_t = EigenTensor<T, 4>::From(*tw).setConstant(0.0);
  auto th_t = EigenTensor<T, 4>::From(*th).setConstant(0.0);
  auto tconf_t = EigenTensor<T, 4>::From(*tconf).setConstant(0.0);
  auto tclass_t = EigenTensor<T, 5>::From(*tclass).setConstant(0.0);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (isZero(gt_boxes_t(i, j, 0)) && isZero(gt_boxes_t(i, j, 1)) &&
          isZero(gt_boxes_t(i, j, 2)) && isZero(gt_boxes_t(i, j, 3))) {
        continue;
      }

193
      int gt_label = static_cast<int>(gt_boxes_t(i, j, 0));
D
dengkaipeng 已提交
194 195 196 197
      T gx = gt_boxes_t(i, j, 1) * grid_size;
      T gy = gt_boxes_t(i, j, 2) * grid_size;
      T gw = gt_boxes_t(i, j, 3) * grid_size;
      T gh = gt_boxes_t(i, j, 4) * grid_size;
198 199 200
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

201
      T max_iou = static_cast<T>(0);
202 203 204 205 206 207
      T iou;
      int best_an_index = -1;
      std::vector<T> gt_box({0, 0, gw, gh});
      for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
D
dengkaipeng 已提交
208
        iou = CalcBoxIoU<T>(gt_box, anchor_shape);
209 210 211 212 213
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
214
          noobj_mask_t(i, an_idx, gj, gi) = 0;
215 216
        }
      }
217 218
      obj_mask_t(i, best_an_index, gj, gi) = 1;
      noobj_mask_t(i, best_an_index, gj, gi) = 0;
219 220
      tx_t(i, best_an_index, gj, gi) = gx - gi;
      ty_t(i, best_an_index, gj, gi) = gy - gj;
D
dengkaipeng 已提交
221 222
      tw_t(i, best_an_index, gj, gi) = log(gw / anchors[2 * best_an_index]);
      th_t(i, best_an_index, gj, gi) = log(gh / anchors[2 * best_an_index + 1]);
223 224
      tclass_t(i, best_an_index, gj, gi, gt_label) = 1;
      tconf_t(i, best_an_index, gj, gi) = 1;
225 226
    }
  }
227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

static void ExpandObjMaskByClassNum(Tensor* obj_mask_expand,
                                    const Tensor& obj_mask) {
  const int n = obj_mask_expand->dims()[0];
  const int an_num = obj_mask_expand->dims()[1];
  const int h = obj_mask_expand->dims()[2];
  const int w = obj_mask_expand->dims()[3];
  const int class_num = obj_mask_expand->dims()[4];
  auto obj_mask_expand_t = EigenTensor<int, 5>::From(*obj_mask_expand);
  auto obj_mask_t = EigenTensor<int, 4>::From(obj_mask);

  obj_mask_expand_t = obj_mask_t.reshape(Array5(n, an_num, h, w, 1))
                          .broadcast(Array5(1, 1, 1, 1, class_num));
241 242 243 244 245 246 247 248
}

template <typename DeviceContext, typename T>
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* gt_boxes = ctx.Input<Tensor>("GTBox");
D
dengkaipeng 已提交
249
    auto* loss = ctx.Output<Tensor>("Loss");
250 251 252 253 254 255 256 257 258 259
    int img_height = ctx.Attr<int>("img_height");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
D
dengkaipeng 已提交
260
    const T stride = static_cast<T>(img_height) / h;
261 262

    Tensor pred_x, pred_y, pred_w, pred_h;
D
dengkaipeng 已提交
263
    Tensor pred_confs, pred_classes;
264 265 266 267 268 269
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_confs.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_classes.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
270 271
    CalcPredResult<T>(*input, &pred_confs, &pred_classes, &pred_x, &pred_y,
                      &pred_w, &pred_h, anchors, class_num, stride);
272

D
dengkaipeng 已提交
273
    Tensor obj_mask, noobj_mask;
274
    Tensor tx, ty, tw, th, tconf, tclass;
D
dengkaipeng 已提交
275 276
    obj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
277 278 279 280 281 282
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
283 284 285 286
    PrePorcessGTBox<T>(*gt_boxes, ignore_thresh, anchors, img_height, h,
                       &obj_mask, &noobj_mask, &tx, &ty, &tw, &th, &tconf,
                       &tclass);

287 288 289 290 291
    Tensor obj_mask_expand;
    obj_mask_expand.mutable_data<int>({n, an_num, h, w, class_num},
                                      ctx.GetPlace());
    ExpandObjMaskByClassNum(&obj_mask_expand, obj_mask);

D
dengkaipeng 已提交
292 293 294 295
    T loss_x = CalcMSEWithMask<T>(pred_x, tx, obj_mask);
    T loss_y = CalcMSEWithMask<T>(pred_y, ty, obj_mask);
    T loss_w = CalcMSEWithMask<T>(pred_w, tw, obj_mask);
    T loss_h = CalcMSEWithMask<T>(pred_h, th, obj_mask);
296 297 298 299 300 301 302 303 304 305 306
    T loss_conf_obj = CalcBCEWithMask<T>(pred_confs, tconf, obj_mask);
    T loss_conf_noobj = CalcBCEWithMask<T>(pred_confs, tconf, noobj_mask);
    T loss_class = CalcBCEWithMask<T>(pred_classes, tclass, obj_mask_expand);

    // LOG(ERROR) << "loss_x: " << loss_x;
    // LOG(ERROR) << "loss_y: " << loss_y;
    // LOG(ERROR) << "loss_w: " << loss_w;
    // LOG(ERROR) << "loss_h: " << loss_h;
    // LOG(ERROR) << "loss_conf_obj: " << loss_conf_obj;
    // LOG(ERROR) << "loss_conf_noobj: " << loss_conf_noobj;
    // LOG(ERROR) << "loss_class: " << loss_class;
D
dengkaipeng 已提交
307 308

    auto* loss_data = loss->mutable_data<T>({1}, ctx.GetPlace());
309 310
    loss_data[0] = loss_x + loss_y + loss_w + loss_h + loss_conf_obj +
                   loss_conf_noobj + loss_class;
311 312 313 314 315 316 317 318 319 320 321 322 323 324
  }
};

template <typename DeviceContext, typename T>
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
  }
};

}  // namespace operators
}  // namespace paddle