margin_rank_loss_op.cc 5.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/margin_rank_loss_op.h"

namespace paddle {
namespace operators {

class MarginRankLossOp : public framework::OperatorWithKernel {
 public:
22
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
23 24 25 26 27

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    // input check
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
28 29 30 31 32
                            "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(X2) shouldn't be null.");
Y
Yibing Liu 已提交
33 34 35
    auto label_dims = ctx.Input<framework::Tensor>("Label")->dims();
    auto x1_dims = ctx.Input<framework::Tensor>("X1")->dims();
    auto x2_dims = ctx.Input<framework::Tensor>("X2")->dims();
36 37
    PADDLE_ENFORCE((label_dims == x1_dims) && (x1_dims == x2_dims) &&
                       (label_dims.size() == 2) && (label_dims[1] == 1),
38 39 40 41 42 43 44 45 46
                   "All inputs must be vector with the same size.");
    auto act_t = ctx.Output<framework::LoDTensor>("Activated");
    auto out_t = ctx.Output<framework::LoDTensor>("Out");
    if (act_t) {
      act_t->Resize(label_dims);
    }
    if (out_t) {
      out_t->Resize(label_dims);
    }
Y
Yibing Liu 已提交
47 48 49
  }
};

50
template <typename T>
Y
Yibing Liu 已提交
51 52 53 54 55
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MarginRankLossOpMaker(framework::OpProto *proto,
                        framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
56 57 58 59 60 61
    AddInput("X1",
             "(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
             "X1 is the score for one item to be ranked.");
    AddInput("X2",
             "(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
             "X2 is the score for another item to be ranked.");
62
    AddInput("Label",
63 64 65 66 67
             "(2-D tensor with shape [batch_size x 1]) "
             "The label indicating X1 ranked higher than X2 or not, "
             "can only be +1 or -1.");
    AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
        .SetDefault(static_cast<T>(0));
Y
Yibing Liu 已提交
68
    AddOutput("Activated",
69 70
              "(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
              "to indicate whether each element of Output(Out) is activated.")
Y
Yibing Liu 已提交
71
        .AsIntermediate();
72 73 74
    AddOutput("Out",
              "(2-D tensor with shape [batch_size x 1])"
              "The output loss of MarginRankLoss operator");
75 76 77
    AddComment(R"DOC(

MarginRankLoss operator measures the loss given a pair of input {`X1`, `X2`}
78
and the `Label` with attribute `margin`, where `Label = +1` indicating X1 is
79
ranked higher than `X2`, otherwise `Label = -1`. The loss turns out
80

81
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin)
Y
Yibing Liu 已提交
82

83 84 85 86 87 88
The attribute `margin` involved here helps make the predictions more robust.
Only when the difference between `X1` and `X2` is greater than `margin`, it is
possible for these two items contribute to the final loss.

For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
Y
Yibing Liu 已提交
89 90 91 92 93 94 95

)DOC");
  }
};

class MarginRankLossGradOp : public framework::OperatorWithKernel {
 public:
96
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Activated"),
                            "Intermediate(Activated) shouldn't be null.");
    auto dims = ctx.Input<framework::Tensor>("X1")->dims();
    auto *x1_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
    auto *x2_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
    if (x1_grad) {
      x1_grad->Resize(dims);
    }
    if (x2_grad) {
      x2_grad->Resize(dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
            ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
            ops::MarginRankLossGradOp);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss,
    ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss_grad,
    ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);