reader.py 25.3 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core, dygraph
S
sneaxiy 已提交
16
import six
17 18
import warnings
import numpy as np
S
sneaxiy 已提交
19
import threading
20 21
import paddle
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider, ListTensorProvider
S
sneaxiy 已提交
24
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
25
from .unique_name import UniqueNameGenerator
S
sneaxiy 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

__all__ = ['PyReader']


def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


S
sneaxiy 已提交
45
class PyReader(object):
S
sneaxiy 已提交
46 47 48 49 50 51 52 53
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
54 55
            The variables should be created by :code:`fluid.layers.data()`.
            it can be None under iterable mode.
S
sneaxiy 已提交
56 57 58 59
        capacity (int): capacity of the queue maintained in PyReader object. 
        use_double_buffer (bool): whether to use double_buffer_reader to 
            speed up data feeding. 
        iterable (bool): whether the created reader object is iterable.   
60
        return_list (bool): whether the return value presented as list.
S
sneaxiy 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
    Returns:
        reader (Reader): the created reader object.

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python
74

H
Huihuang Zheng 已提交
75 76 77 78
           import paddle
           import paddle.fluid as fluid
           import numpy as np

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

           image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int64')

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
           # definition of network is omitted
           executor = fluid.Executor(fluid.CUDAPlace(0))
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
S
sneaxiy 已提交
116 117 118 119 120 121 122 123
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

H
Huihuang Zheng 已提交
124 125 126 127
           import paddle
           import paddle.fluid as fluid
           import numpy as np

128 129 130 131 132 133 134 135 136 137 138
           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]),
               return reader

           image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
139
           reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=True, return_list=False)
140 141 142 143 144 145 146 147 148 149 150 151 152

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
               fluid.core.CUDAPlace(0))
           # definition of network is omitted
           executor = fluid.Executor(fluid.CUDAPlace(0))
           executor.run(fluid.default_main_program())

           for _ in range(EPOCH_NUM):
               for data in reader():
                   executor.run(feed=data)

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        3. If return_list=True, the return values would be presented as list instead of dict`.

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            EPOCH_NUM = 3
            ITER_NUM = 5
            BATCH_SIZE = 10

            def reader_creator_random_image(height, width):
                def reader():
                    for i in range(ITER_NUM):
                        yield np.random.uniform(low=0, high=255, size=[height, width]),
                return reader

            image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
            reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=True, return_list=True)

            user_defined_reader = reader_creator_random_image(784, 784)
            reader.decorate_sample_list_generator(
                paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                fluid.core.CPUPlace())
            # definition of network is omitted
            executor = fluid.Executor(fluid.core.CPUPlace())
            executor.run(fluid.default_main_program())

            for _ in range(EPOCH_NUM):
                for data in reader():
                    executor.run(feed={"image": data[0]})
S
sneaxiy 已提交
186 187
    """

S
sneaxiy 已提交
188
    unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
189 190

    def __init__(self,
191 192
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
193
                 use_double_buffer=True,
194 195
                 iterable=True,
                 return_list=False):
S
sneaxiy 已提交
196 197
        self._tensor_reader = None
        self._thread = None
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        self._feed_list = feed_list
        if not capacity:
            raise ValueError("Please give value to capacity.")
        # force to use iterable mode under dygraph mode
        if in_dygraph_mode():
            if not iterable:
                warnings.warn(
                    "Please NOTE: dygraph can support iterable mode only.")
            self._iterable = True
            if not return_list:
                warnings.warn(
                    "Please NOTE: dygraph can support return as list only.")
            self._return_list = True
        else:
            self._iterable = iterable
            self._return_list = return_list
            if not self._feed_list:
                raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
216 217 218 219
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
220

S
sneaxiy 已提交
221
    def _init_iterable(self, places):
222 223 224 225
        if in_dygraph_mode():
            self._var_names = []
        else:
            self._var_names = [v.name for v in self._feed_list]
S
sneaxiy 已提交
226
        self._places = _convert_places(places)
S
sneaxiy 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        self._queue = core.init_lod_tensor_blocking_queue(core.Variable(),
                                                          self._capacity)
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._places, self._use_double_buffer)

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)

        queue_name = PyReader.unique_name_generator('lod_tensor_blocking_queue')
        reader_name = PyReader.unique_name_generator('create_py_reader')
        double_buffer_name = PyReader.unique_name_generator('double_buffer')

S
sneaxiy 已提交
250
        var = global_scope().var(queue_name)
S
sneaxiy 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity)

        startup_blk = default_startup_program().current_block()
        startup_var = startup_blk.create_var(name=reader_name)

        startup_blk.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [startup_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
                'ranks': ranks
            })

        startup_var.desc.set_dtypes(dtypes)
        startup_var.persistable = True

        main_prog_var = _copy_reader_var_(
            default_main_program().current_block(), startup_var)

        main_prog_var.stop_gradient = True
        main_prog_var.persistable = True

        reader = monkey_patch_reader_methods(main_prog_var)
        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
            outputs={'Out': self._feed_list})

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
298 299

    def __call__(self):
S
sneaxiy 已提交
300
        assert self.iterable, "PyReader is not iterable"
S
sneaxiy 已提交
301 302 303 304 305
        assert self._tensor_reader is not None, \
            "Data source of PyReader has not set yet"

        class Iterator(object):
            def __init__(self, reader):
S
sneaxiy 已提交
306 307
                self._reader = reader._reader
                self._reset = reader._reset
308
                self._return_list = reader._return_list
S
sneaxiy 已提交
309 310 311 312

            def __iter__(self):
                return self

S
sneaxiy 已提交
313 314 315
            def __next__(self):
                return self.next()

S
sneaxiy 已提交
316
            def next(self):
317 318 319 320 321 322 323 324 325 326 327 328
                if not in_dygraph_mode():
                    if self._return_list:
                        ret = self._reader.read_next_list()
                        ret = ret[0] if ret is not None and len(
                            ret) > 0 else None
                    else:
                        ret = self._reader.read_next()
                    if ret:
                        return ret
                    else:
                        self._reset()
                        raise StopIteration
S
sneaxiy 已提交
329
                else:
330 331 332 333 334 335 336 337 338
                    ret = self._reader.read_next_list()
                    if ret and ret[0]:
                        return [
                            dygraph.base.to_variable(np.array(v))
                            for v in ret[0]
                        ]
                    else:
                        self._reset()
                        raise StopIteration
S
sneaxiy 已提交
339

S
sneaxiy 已提交
340
        self._start()
S
sneaxiy 已提交
341 342
        return Iterator(self)

S
sneaxiy 已提交
343
    def _reset(self):
S
sneaxiy 已提交
344 345 346 347
        self._reader.reset()
        self._thread.join()

    def start(self):
S
add doc  
sneaxiy 已提交
348 349 350
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
351 352 353
        
	Example:
	    .. code-block:: python
H
Huihuang Zheng 已提交
354 355 356 357 358

                import paddle
                import paddle.fluid as fluid
                import numpy as np

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

	'''
382 383 384
        if not in_dygraph_mode():
            assert not self._iterable, "start() cannot be called when PyReader is iterable"
            self._start()
S
sneaxiy 已提交
385

S
sneaxiy 已提交
386
    def reset(self):
S
add doc  
sneaxiy 已提交
387 388 389
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
390 391 392 393
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
394 395 396 397
                import paddle
                import paddle.fluid as fluid
                import numpy as np

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
420
        '''
421 422 423
        if not in_dygraph_mode():
            assert not self._iterable, "reset() cannot be called when PyReader is iterable"
            self._reset()
S
sneaxiy 已提交
424 425

    def _start(self):
S
sneaxiy 已提交
426
        def __thread_main__():
S
sneaxiy 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            try:
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
            except Exception as ex:
                self._queue.close()
                raise ex
S
sneaxiy 已提交
445 446 447 448 449

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()

S
sneaxiy 已提交
450 451 452 453 454 455 456 457 458
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
459
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
460 461 462 463

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
464
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
465 466 467

        Args:
            sample_generator (generator): Python generator that yields
468
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
469 470 471 472 473
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
474 475 476 477

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
478 479 480
                import paddle.fluid as fluid
                import numpy as np

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
                                                 places=[fluid.CUDAPlace(0)])
                # definition of network is omitted
                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)
    
S
sneaxiy 已提交
511 512
        '''
        assert batch_size > 0, "batch_size must be larger than 0"
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        if not in_dygraph_mode():
            has_lod = False
            for f in self._feed_list:
                if f.lod_level != 0:
                    has_lod = True
                    break

            if has_lod:
                self.decorate_sample_list_generator(
                    paddle.batch(
                        sample_generator,
                        batch_size=batch_size,
                        drop_last=drop_last),
                    places=places)
            else:
                reader = BatchedTensorProvider(
                    feed_list=self._feed_list,
                    place=core.CPUPlace(),
                    batch_size=batch_size,
                    generator=sample_generator,
                    drop_last=drop_last)
                self.decorate_batch_generator(reader, places=places)
        else:
S
sneaxiy 已提交
536
            self.decorate_sample_list_generator(
S
sneaxiy 已提交
537 538 539 540 541 542
                paddle.batch(
                    sample_generator,
                    batch_size=batch_size,
                    drop_last=drop_last),
                places=places)

S
sneaxiy 已提交
543
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
544 545 546 547
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
548
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
549 550 551 552
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
553 554 555 556
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
557 558 559 560
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
561 562 563 564
                import paddle
                import paddle.fluid as fluid
                import numpy as np

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
                    fluid.core.CUDAPlace(0))
                # definition of network is omitted
                executor = fluid.Executor(fluid.core.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)
                 
S
add doc  
sneaxiy 已提交
595
        '''
S
sneaxiy 已提交
596 597
        assert self._tensor_reader is None, \
            "Cannot reset the data source of PyReader"
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
        if not in_dygraph_mode():
            with program_guard(Program(), Program()):
                feeder = DataFeeder(
                    feed_list=self._feed_list, place=core.CPUPlace())
                paddle_reader = feeder.decorate_reader(
                    reader, multi_devices=False)

            def __tensor_reader_impl__():
                for slots in paddle_reader():
                    yield [slots[var.name] for var in self._feed_list]
        else:
            provider = ListTensorProvider(reader, places)

            def __tensor_reader_impl__():
                for slots in provider():
                    yield slots[0]
S
sneaxiy 已提交
614

S
sneaxiy 已提交
615
        self.decorate_batch_generator(__tensor_reader_impl__, places)
S
sneaxiy 已提交
616

S
sneaxiy 已提交
617
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
618 619 620 621
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
622
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
623 624 625 626 627 628

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
629
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
630
                be provided when PyReader is iterable.
631 632 633 634

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
635 636 637
                import paddle.fluid as fluid
                import numpy as np

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
                            yield batch_image, batch_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_batch_generator(user_defined_generator, fluid.CUDAPlace(0))
                # definition of network is omitted
                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)

S
add doc  
sneaxiy 已提交
666
        '''
S
sneaxiy 已提交
667 668 669
        assert self._tensor_reader is None, \
            "Cannot reset the data source of PyReader"
        self._tensor_reader = reader
S
sneaxiy 已提交
670 671 672
        if self._iterable:
            assert places is not None, "Places cannot be None when py_reader is iterable"
            self._init_iterable(places)