cpu_vec.h 17.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#include <cmath>
T
tensor-tang 已提交
17
#include <functional>
18
#include <string>
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/enforce.h"
21

T
tensor-tang 已提交
22 23 24
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
T
tensor-tang 已提交
25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {
namespace math {

#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0

33
#define YMM_FLOAT_BLOCK 8
T
tensor-tang 已提交
34
#define AVX_DOUBLE_BLOCK 4
35
#define YMM_FLOAT_BLOCK 8
T
tensor-tang 已提交
36
#define AVX2_DOUBLE_BLOCK 4
37
#define ZMM_FLOAT_BLOCK 16
T
tensor-tang 已提交
38 39
#define AVX512_DOUBLE_BLOCK 8

T
tensor-tang 已提交
40
template <typename T>
T
tensor-tang 已提交
41 42 43 44
inline void vec_exp(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
T
tensor-tang 已提交
45 46
}

47 48 49 50 51 52 53
template <typename T>
inline void vec_scal(const int n, const T a, T* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}

T
tensor-tang 已提交
54 55 56
#ifdef PADDLE_WITH_MKLML
template <>
inline void vec_exp<float>(const int n, const float* x, float* y) {
57 58 59 60 61 62 63 64
  constexpr int small_enough = 128;
  if (n < small_enough) {
    for (int i = 0; i < n; ++i) {
      y[i] = std::exp(x[i]);
    }
  } else {
    platform::dynload::vsExp(n, x, y);
  }
T
tensor-tang 已提交
65 66
}

T
tensor-tang 已提交
67 68 69 70
template <>
inline void vec_exp<double>(const int n, const double* x, double* y) {
  platform::dynload::vdExp(n, x, y);
}
71 72 73 74 75 76 77 78 79 80 81 82 83

template <>
inline void vec_scal<float>(const int n, const float a, float* x) {
  platform::dynload::cblas_sscal(n, a, x, 1);
}

template <>
inline void vec_scal<double>(const int n, const double a, double* x) {
  platform::dynload::cblas_dscal(n, a, x, 1);
}
#endif

// MKL scal only support inplace, choose this if src and dst are not equal
T
tensor-tang 已提交
84
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
85 86 87 88 89 90 91
inline void vec_scal(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}

template <>
T
tensor-tang 已提交
92 93
inline void vec_scal<float, platform::avx>(const int n, const float a,
                                           const float* x, float* y) {
94
#ifdef __AVX__
95
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
96
  if (n < block) {
T
tensor-tang 已提交
97
    vec_scal<float, platform::isa_any>(n, a, x, y);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 scalar = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP               \
  tmp = _mm256_loadu_ps(x + i);     \
  tmp = _mm256_mul_ps(tmp, scalar); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = a * x[i];
  }
#else
T
tensor-tang 已提交
121
  vec_scal<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
122
#endif
123 124 125
}

template <>
T
tensor-tang 已提交
126 127 128
inline void vec_scal<float, platform::avx2>(const int n, const float a,
                                            const float* x, float* y) {
  vec_scal<float, platform::avx>(n, a, x, y);
129 130 131
}

template <>
T
tensor-tang 已提交
132 133
inline void vec_scal<float, platform::avx512f>(const int n, const float a,
                                               const float* x, float* y) {
134
  // TODO(TJ): enable me
T
tensor-tang 已提交
135
  vec_scal<float, platform::avx2>(n, a, x, y);
136
}
T
tensor-tang 已提交
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
inline void vec_sum(const size_t n, const T* x, T* s) {
  s[0] = x[0];
  for (size_t i = 1; i < n; ++i) {
    s[0] += x[i];
  }
}

template <>
inline void vec_sum<float, platform::avx>(const size_t n, const float* x,
                                          float* s) {
#ifdef __AVX__
  constexpr unsigned int block = YMM_FLOAT_BLOCK;
  if (n < block) {
    vec_sum<float, platform::isa_any>(n, x, s);
    return;
  }

  unsigned int i, end;
  i = end = 0;
  s[0] = 0.f;

  end = n & ~(block - 1);
  __m256 tmp = _mm256_setzero_ps();
  for (i = 0; i < end; i += block) {
163
    tmp = _mm256_add_ps(tmp, _mm256_loadu_ps(x + i));
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  }

  __m256 hsum = _mm256_hadd_ps(tmp, tmp);
  hsum = _mm256_add_ps(hsum, _mm256_permute2f128_ps(hsum, hsum, 0x1));
  _mm_store_ss(s, _mm_hadd_ps(_mm256_castps256_ps128(hsum),
                              _mm256_castps256_ps128(hsum)));

  for (; i < n; i++) {
    s[0] += x[i];
  }
#else
  vec_sum<float, platform::isa_any>(n, x, s);
#endif
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
inline void vec_mul(const size_t n, const T* x, const T* y, T* z) {
  for (size_t i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

template <>
inline void vec_mul<float, platform::avx>(const size_t n, const float* x,
                                          const float* y, float* z) {
#ifdef __AVX__
  constexpr unsigned int block = YMM_FLOAT_BLOCK;
  if (n < block) {
    vec_mul<float, platform::isa_any>(n, x, y, z);
    return;
  }

  unsigned int i = 0, end = 0;
  end = n & ~(block - 1);
  for (i = 0; i < end; i += block) {
    _mm256_storeu_ps(
        z + i, _mm256_mul_ps(_mm256_loadu_ps(x + i), _mm256_loadu_ps(y + i)));
  }

  for (; i < n; i++) {
    z[i] = x[i] * y[i];
  }
#else
  vec_mul<float, platform::isa_any>(n, x, y, z);
#endif
}

template <typename T, platform::cpu_isa_t isa = platform::isa_any>
inline void vec_mul_reduce(const size_t n, const T* x, const T* y, T* z) {
  z[0] = x[0] * y[0];
  for (size_t i = 1; i < n; ++i) {
    z[0] += x[i] * y[i];
  }
}

template <>
inline void vec_mul_reduce<float, platform::avx>(const size_t n, const float* x,
                                                 const float* y, float* z) {
#ifdef __AVX__
  constexpr unsigned int block = YMM_FLOAT_BLOCK;
  if (n < block) {
    vec_mul_reduce<float, platform::isa_any>(n, x, y, z);
    return;
  }

  unsigned int i = 0, end = 0;
  z[0] = 0.f;

  end = n & ~(block - 1);
  __m256 tmp = _mm256_setzero_ps();
  for (i = 0; i < end; i += block) {
    tmp = _mm256_add_ps(
        tmp, _mm256_mul_ps(_mm256_loadu_ps(x + i), _mm256_loadu_ps(y + i)));
  }

  __m256 hsum = _mm256_hadd_ps(tmp, tmp);
  hsum = _mm256_add_ps(hsum, _mm256_permute2f128_ps(hsum, hsum, 0x1));
  _mm_store_ss(z, _mm_hadd_ps(_mm256_castps256_ps128(hsum),
                              _mm256_castps256_ps128(hsum)));

  for (; i < n; i++) {
    z[0] += x[i] * y[i];
  }
#else
  vec_mul_reduce<float, platform::isa_any>(n, x, y, z);
#endif
}

T
tensor-tang 已提交
252
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
253 254 255 256 257 258 259
inline void vec_bias_sub(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a - x[i];
  }
}

template <>
T
tensor-tang 已提交
260 261
inline void vec_bias_sub<float, platform::avx>(const int n, const float a,
                                               const float* x, float* y) {
T
tensor-tang 已提交
262
#ifdef __AVX__
263
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
264
  if (n < block) {
T
tensor-tang 已提交
265
    vec_bias_sub<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(x + i);   \
  tmp = _mm256_sub_ps(bias, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = a - x[i];
  }
#else
T
tensor-tang 已提交
289
  vec_bias_sub<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
290 291 292 293
#endif
}

template <>
T
tensor-tang 已提交
294 295 296
inline void vec_bias_sub<float, platform::avx2>(const int n, const float a,
                                                const float* x, float* y) {
  vec_bias_sub<float, platform::avx>(n, a, x, y);
T
tensor-tang 已提交
297 298 299
}

template <>
T
tensor-tang 已提交
300 301
inline void vec_bias_sub<float, platform::avx512f>(const int n, const float a,
                                                   const float* x, float* y) {
T
tensor-tang 已提交
302
  // TODO(TJ): enable me
T
tensor-tang 已提交
303
  vec_bias_sub<float, platform::avx2>(n, a, x, y);
T
tensor-tang 已提交
304 305
}

T
tensor-tang 已提交
306
// out = x*y + (1-x)*z
T
tensor-tang 已提交
307
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
308 309 310 311 312 313 314
inline void vec_cross(const int n, const T* x, const T* y, const T* z, T* out) {
  for (int i = 0; i < n; ++i) {
    out[i] = x[i] * y[i] + (static_cast<T>(1) - x[i]) * z[i];
  }
}

template <>
T
tensor-tang 已提交
315 316 317
inline void vec_cross<float, platform::avx>(const int n, const float* x,
                                            const float* y, const float* z,
                                            float* out) {
T
tensor-tang 已提交
318
#ifdef __AVX__
319
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
320
  if (n < block) {
T
tensor-tang 已提交
321
    vec_cross<float, platform::isa_any>(n, x, y, z, out);
T
tensor-tang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(1.f);
  __m256 tmpx, tmpy, tmpz;
  for (i = 0; i < end; i += block) {
    tmpx = _mm256_loadu_ps(x + i);
    tmpy = _mm256_loadu_ps(y + i);
    tmpz = _mm256_loadu_ps(z + i);
    tmpy = _mm256_mul_ps(tmpx, tmpy);
    tmpx = _mm256_sub_ps(bias, tmpx);
    tmpz = _mm256_mul_ps(tmpx, tmpz);
    tmpz = _mm256_add_ps(tmpy, tmpz);
    _mm256_storeu_ps(out + i, tmpz);
  }
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    out[i] = x[i] * y[i] + (1.f - x[i]) * z[i];
  }
#else
T
tensor-tang 已提交
347
  vec_cross<float, platform::isa_any>(n, x, y, z, out);
T
tensor-tang 已提交
348 349 350 351
#endif
}

template <>
T
tensor-tang 已提交
352 353 354 355
inline void vec_cross<float, platform::avx2>(const int n, const float* x,
                                             const float* y, const float* z,
                                             float* out) {
  vec_cross<float, platform::avx>(n, x, y, z, out);
T
tensor-tang 已提交
356 357 358
}

template <>
T
tensor-tang 已提交
359 360 361
inline void vec_cross<float, platform::avx512f>(const int n, const float* x,
                                                const float* y, const float* z,
                                                float* out) {
T
tensor-tang 已提交
362
  // TODO(TJ): enable me
T
tensor-tang 已提交
363
  vec_cross<float, platform::avx>(n, x, y, z, out);
T
tensor-tang 已提交
364 365
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
inline void vec_clip(const size_t n, const T a, const T* x, T* y) {
  for (size_t i = 0; i < n; ++i) {
    y[i] = x[i] < a ? a : x[i];
  }
}

template <>
inline void vec_clip<float, platform::avx>(const size_t n, const float a,
                                           const float* x, float* y) {
#ifdef __AVX__
  constexpr unsigned int block = YMM_FLOAT_BLOCK;
  if (n < block) {
    vec_clip<float, platform::isa_any>(n, a, x, y);
    return;
  }

  unsigned int i = 0, end = 0;
  end = n & ~(block - 1);
  __m256 threshold = _mm256_set1_ps(a);

  for (i = 0; i < end; i += block) {
    _mm256_storeu_ps(y + i, _mm256_max_ps(_mm256_loadu_ps(x + i), threshold));
  }

  for (; i < n; i++) {
    y[i] = x[i] < a ? a : x[i];
  }
#else
  vec_clip<float, platform::isa_any>(n, a, x, y);
#endif
}

T
tensor-tang 已提交
399
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
400 401 402 403 404 405 406
inline void vec_add_bias(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] + a;
  }
}

template <>
T
tensor-tang 已提交
407 408
inline void vec_add_bias<float, platform::avx>(const int n, const float a,
                                               const float* x, float* y) {
T
tensor-tang 已提交
409
#ifdef __AVX__
410
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
411
  if (n < block) {
T
tensor-tang 已提交
412
    vec_add_bias<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(x + i);   \
  tmp = _mm256_add_ps(tmp, bias); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = x[i] + a;
  }
#else
T
tensor-tang 已提交
436
  vec_add_bias<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
437 438 439 440
#endif
}

template <>
T
tensor-tang 已提交
441 442 443
inline void vec_add_bias<float, platform::avx2>(const int n, const float a,
                                                const float* x, float* y) {
  vec_add_bias<float, platform::avx>(n, a, x, y);
T
tensor-tang 已提交
444 445 446
}

template <>
T
tensor-tang 已提交
447 448
inline void vec_add_bias<float, platform::avx512f>(const int n, const float a,
                                                   const float* x, float* y) {
T
tensor-tang 已提交
449
  // TODO(TJ): enable me
T
tensor-tang 已提交
450
  vec_add_bias<float, platform::avx2>(n, a, x, y);
T
tensor-tang 已提交
451 452
}

T
tensor-tang 已提交
453
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
454 455 456 457 458
inline void vec_identity(const int n, const T* x, T* y) {
  // do nothing
  return;
}

T
tensor-tang 已提交
459
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
460 461 462 463
inline void vec_sigmoid(const int n, const T* x, T* y) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
464 465 466 467 468 469
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  vec_exp<T>(n, y, y);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
T
tensor-tang 已提交
470 471 472
  }
}

473
template <>
T
tensor-tang 已提交
474 475
inline void vec_sigmoid<float, platform::avx>(const int n, const float* x,
                                              float* y) {
476
#ifdef __AVX__
477
  constexpr int block = YMM_FLOAT_BLOCK;
478
  if (n < block) {
T
tensor-tang 已提交
479
    vec_sigmoid<float, platform::isa_any>(n, x, y);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, min);   \
  tmp = _mm256_min_ps(tmp, max);   \
  tmp = _mm256_sub_ps(zeros, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
498
#undef MOVE_ONE_STEP
499
  if (rest != 0) {
500 501 502 503 504 505
    // can not continue move step since the src and dst address could be equal
    const float xmin = SIGMOID_THRESHOLD_MIN;
    const float xmax = SIGMOID_THRESHOLD_MAX;
    for (i = n - rest; i < n; ++i) {
      y[i] = 0.f - ((x[i] < xmin) ? xmin : ((x[i] > xmax) ? xmax : x[i]));
    }
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
  }

  vec_exp<float>(n, y, y);

  __m256 ones = _mm256_set1_ps(1.0f);
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(y + i);   \
  tmp = _mm256_add_ps(ones, tmp); \
  tmp = _mm256_div_ps(ones, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step
  for (i = n - rest; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
#else
T
tensor-tang 已提交
528
  vec_sigmoid<float, platform::isa_any>(n, x, y);
529 530 531 532
#endif
}

template <>
T
tensor-tang 已提交
533 534 535
inline void vec_sigmoid<float, platform::avx2>(const int n, const float* x,
                                               float* y) {
  vec_sigmoid<float, platform::avx>(n, x, y);
536 537 538
}

template <>
T
tensor-tang 已提交
539 540
inline void vec_sigmoid<float, platform::avx512f>(const int n, const float* x,
                                                  float* y) {
541
  // TODO(TJ): enable me
T
tensor-tang 已提交
542
  vec_sigmoid<float, platform::avx2>(n, x, y);
543 544
}

T
tensor-tang 已提交
545
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
546
inline void vec_tanh(const int n, const T* x, T* y) {
547 548 549
  vec_scal<T, isa>(n, static_cast<T>(2), x, y);
  vec_sigmoid<T, isa>(n, y, y);
  vec_scal<T>(n, static_cast<T>(2), y);
T
tensor-tang 已提交
550
  vec_add_bias<T, isa>(n, static_cast<T>(-1), y, y);
T
tensor-tang 已提交
551 552
}

T
tensor-tang 已提交
553
// TODO(TJ): make relu clip
T
tensor-tang 已提交
554
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
555 556 557 558 559 560
inline void vec_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

T
tensor-tang 已提交
561
template <>
T
tensor-tang 已提交
562 563
inline void vec_relu<float, platform::avx>(const int n, const float* x,
                                           float* y) {
T
tensor-tang 已提交
564
#ifdef __AVX__
565
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
566
  if (n < block * 4) {
T
tensor-tang 已提交
567
    vec_relu<float, platform::isa_any>(n, x, y);
T
tensor-tang 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    return;
  }

  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, zeros); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
  if (rest == 0) {
    return;
  }
  i = n - block;
  MOVE_ONE_STEP;
#undef MOVE_ONE_STEP

#else
T
tensor-tang 已提交
591
  vec_relu<float, platform::isa_any>(n, x, y);
T
tensor-tang 已提交
592 593 594
#endif
}

T
tensor-tang 已提交
595
template <>
T
tensor-tang 已提交
596 597 598
inline void vec_relu<float, platform::avx2>(const int n, const float* x,
                                            float* y) {
  vec_relu<float, platform::avx>(n, x, y);
T
tensor-tang 已提交
599 600 601
}

template <>
T
tensor-tang 已提交
602 603
inline void vec_relu<float, platform::avx512f>(const int n, const float* x,
                                               float* y) {
604
  // TODO(TJ): enable me
T
tensor-tang 已提交
605
  vec_relu<float, platform::avx2>(n, x, y);
T
tensor-tang 已提交
606 607
}

T
tensor-tang 已提交
608 609
// TODO(TJ): optimize double of sigmoid, tanh and relu if necessary

T
tensor-tang 已提交
610
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
611 612 613 614 615 616 617 618 619 620 621 622 623
class VecActivations {
 public:
  std::function<void(const int, const T*, T*)> operator()(
      const std::string& type) {
    if (type == "sigmoid") {
      return vec_sigmoid<T, isa>;
    } else if (type == "relu") {
      return vec_relu<T, isa>;
    } else if (type == "tanh") {
      return vec_tanh<T, isa>;
    } else if (type == "identity" || type == "") {
      return vec_identity<T, isa>;
    }
624 625 626 627
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Expected type should be one of sigmod, relu, tanh, identity. But got "
        "not support type: %s.",
        type));
628 629 630
  }
};

T
tensor-tang 已提交
631 632 633
}  // namespace math
}  // namespace operators
}  // namespace paddle