cpu_vec.h 15.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#include <cmath>
T
tensor-tang 已提交
17
#include <functional>
18
#include <string>
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/enforce.h"
21

T
tensor-tang 已提交
22 23 24
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
T
tensor-tang 已提交
25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {
namespace math {

#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0

33
#define YMM_FLOAT_BLOCK 8
T
tensor-tang 已提交
34
#define AVX_DOUBLE_BLOCK 4
35
#define YMM_FLOAT_BLOCK 8
T
tensor-tang 已提交
36
#define AVX2_DOUBLE_BLOCK 4
37
#define ZMM_FLOAT_BLOCK 16
T
tensor-tang 已提交
38 39
#define AVX512_DOUBLE_BLOCK 8

T
tensor-tang 已提交
40
template <typename T>
T
tensor-tang 已提交
41 42 43 44
inline void vec_exp(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
T
tensor-tang 已提交
45 46
}

47 48 49 50 51 52 53
template <typename T>
inline void vec_scal(const int n, const T a, T* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}

T
tensor-tang 已提交
54 55 56
#ifdef PADDLE_WITH_MKLML
template <>
inline void vec_exp<float>(const int n, const float* x, float* y) {
57 58 59 60 61 62 63 64
  constexpr int small_enough = 128;
  if (n < small_enough) {
    for (int i = 0; i < n; ++i) {
      y[i] = std::exp(x[i]);
    }
  } else {
    platform::dynload::vsExp(n, x, y);
  }
T
tensor-tang 已提交
65 66
}

T
tensor-tang 已提交
67 68 69 70
template <>
inline void vec_exp<double>(const int n, const double* x, double* y) {
  platform::dynload::vdExp(n, x, y);
}
71 72 73 74 75 76 77 78 79 80 81 82 83

template <>
inline void vec_scal<float>(const int n, const float a, float* x) {
  platform::dynload::cblas_sscal(n, a, x, 1);
}

template <>
inline void vec_scal<double>(const int n, const double a, double* x) {
  platform::dynload::cblas_dscal(n, a, x, 1);
}
#endif

// MKL scal only support inplace, choose this if src and dst are not equal
T
tensor-tang 已提交
84
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
85 86 87 88 89 90 91
inline void vec_scal(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}

template <>
T
tensor-tang 已提交
92 93
inline void vec_scal<float, platform::avx>(const int n, const float a,
                                           const float* x, float* y) {
94
#ifdef __AVX__
95
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
96
  if (n < block) {
T
tensor-tang 已提交
97
    vec_scal<float, platform::isa_any>(n, a, x, y);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 scalar = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP               \
  tmp = _mm256_loadu_ps(x + i);     \
  tmp = _mm256_mul_ps(tmp, scalar); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = a * x[i];
  }
#else
T
tensor-tang 已提交
121
  vec_scal<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
122
#endif
123 124 125
}

template <>
T
tensor-tang 已提交
126 127 128
inline void vec_scal<float, platform::avx2>(const int n, const float a,
                                            const float* x, float* y) {
  vec_scal<float, platform::avx>(n, a, x, y);
129 130 131
}

template <>
T
tensor-tang 已提交
132 133
inline void vec_scal<float, platform::avx512f>(const int n, const float a,
                                               const float* x, float* y) {
134
  // TODO(TJ): enable me
T
tensor-tang 已提交
135
  vec_scal<float, platform::avx2>(n, a, x, y);
136
}
T
tensor-tang 已提交
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
inline void vec_sum(const size_t n, const T* x, T* s) {
  s[0] = x[0];
  for (size_t i = 1; i < n; ++i) {
    s[0] += x[i];
  }
}

template <>
inline void vec_sum<float, platform::avx>(const size_t n, const float* x,
                                          float* s) {
#ifdef __AVX__
  constexpr unsigned int block = YMM_FLOAT_BLOCK;
  if (n < block) {
    vec_sum<float, platform::isa_any>(n, x, s);
    return;
  }

  unsigned int i, end;
  i = end = 0;
  s[0] = 0.f;

  end = n & ~(block - 1);
  __m256 tmp = _mm256_setzero_ps();
  for (i = 0; i < end; i += block) {
    tmp = _mm256_add_ps(tmp, _mm256_load_ps(x + i));
  }

  __m256 hsum = _mm256_hadd_ps(tmp, tmp);
  hsum = _mm256_add_ps(hsum, _mm256_permute2f128_ps(hsum, hsum, 0x1));
  _mm_store_ss(s, _mm_hadd_ps(_mm256_castps256_ps128(hsum),
                              _mm256_castps256_ps128(hsum)));

  for (; i < n; i++) {
    s[0] += x[i];
  }
#else
  vec_sum<float, platform::isa_any>(n, x, s);
#endif
}

T
tensor-tang 已提交
179
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
180 181 182 183 184 185 186
inline void vec_bias_sub(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a - x[i];
  }
}

template <>
T
tensor-tang 已提交
187 188
inline void vec_bias_sub<float, platform::avx>(const int n, const float a,
                                               const float* x, float* y) {
T
tensor-tang 已提交
189
#ifdef __AVX__
190
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
191
  if (n < block) {
T
tensor-tang 已提交
192
    vec_bias_sub<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(x + i);   \
  tmp = _mm256_sub_ps(bias, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = a - x[i];
  }
#else
T
tensor-tang 已提交
216
  vec_bias_sub<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
217 218 219 220
#endif
}

template <>
T
tensor-tang 已提交
221 222 223
inline void vec_bias_sub<float, platform::avx2>(const int n, const float a,
                                                const float* x, float* y) {
  vec_bias_sub<float, platform::avx>(n, a, x, y);
T
tensor-tang 已提交
224 225 226
}

template <>
T
tensor-tang 已提交
227 228
inline void vec_bias_sub<float, platform::avx512f>(const int n, const float a,
                                                   const float* x, float* y) {
T
tensor-tang 已提交
229
  // TODO(TJ): enable me
T
tensor-tang 已提交
230
  vec_bias_sub<float, platform::avx2>(n, a, x, y);
T
tensor-tang 已提交
231 232
}

T
tensor-tang 已提交
233
// out = x*y + (1-x)*z
T
tensor-tang 已提交
234
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
235 236 237 238 239 240 241
inline void vec_cross(const int n, const T* x, const T* y, const T* z, T* out) {
  for (int i = 0; i < n; ++i) {
    out[i] = x[i] * y[i] + (static_cast<T>(1) - x[i]) * z[i];
  }
}

template <>
T
tensor-tang 已提交
242 243 244
inline void vec_cross<float, platform::avx>(const int n, const float* x,
                                            const float* y, const float* z,
                                            float* out) {
T
tensor-tang 已提交
245
#ifdef __AVX__
246
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
247
  if (n < block) {
T
tensor-tang 已提交
248
    vec_cross<float, platform::isa_any>(n, x, y, z, out);
T
tensor-tang 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(1.f);
  __m256 tmpx, tmpy, tmpz;
  for (i = 0; i < end; i += block) {
    tmpx = _mm256_loadu_ps(x + i);
    tmpy = _mm256_loadu_ps(y + i);
    tmpz = _mm256_loadu_ps(z + i);
    tmpy = _mm256_mul_ps(tmpx, tmpy);
    tmpx = _mm256_sub_ps(bias, tmpx);
    tmpz = _mm256_mul_ps(tmpx, tmpz);
    tmpz = _mm256_add_ps(tmpy, tmpz);
    _mm256_storeu_ps(out + i, tmpz);
  }
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    out[i] = x[i] * y[i] + (1.f - x[i]) * z[i];
  }
#else
T
tensor-tang 已提交
274
  vec_cross<float, platform::isa_any>(n, x, y, z, out);
T
tensor-tang 已提交
275 276 277 278
#endif
}

template <>
T
tensor-tang 已提交
279 280 281 282
inline void vec_cross<float, platform::avx2>(const int n, const float* x,
                                             const float* y, const float* z,
                                             float* out) {
  vec_cross<float, platform::avx>(n, x, y, z, out);
T
tensor-tang 已提交
283 284 285
}

template <>
T
tensor-tang 已提交
286 287 288
inline void vec_cross<float, platform::avx512f>(const int n, const float* x,
                                                const float* y, const float* z,
                                                float* out) {
T
tensor-tang 已提交
289
  // TODO(TJ): enable me
T
tensor-tang 已提交
290
  vec_cross<float, platform::avx>(n, x, y, z, out);
T
tensor-tang 已提交
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
inline void vec_clip(const size_t n, const T a, const T* x, T* y) {
  for (size_t i = 0; i < n; ++i) {
    y[i] = x[i] < a ? a : x[i];
  }
}

template <>
inline void vec_clip<float, platform::avx>(const size_t n, const float a,
                                           const float* x, float* y) {
#ifdef __AVX__
  constexpr unsigned int block = YMM_FLOAT_BLOCK;
  if (n < block) {
    vec_clip<float, platform::isa_any>(n, a, x, y);
    return;
  }

  unsigned int i = 0, end = 0;
  end = n & ~(block - 1);
  __m256 threshold = _mm256_set1_ps(a);

  for (i = 0; i < end; i += block) {
    _mm256_storeu_ps(y + i, _mm256_max_ps(_mm256_loadu_ps(x + i), threshold));
  }

  for (; i < n; i++) {
    y[i] = x[i] < a ? a : x[i];
  }
#else
  vec_clip<float, platform::isa_any>(n, a, x, y);
#endif
}

T
tensor-tang 已提交
326
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
327 328 329 330 331 332 333
inline void vec_add_bias(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] + a;
  }
}

template <>
T
tensor-tang 已提交
334 335
inline void vec_add_bias<float, platform::avx>(const int n, const float a,
                                               const float* x, float* y) {
T
tensor-tang 已提交
336
#ifdef __AVX__
337
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
338
  if (n < block) {
T
tensor-tang 已提交
339
    vec_add_bias<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(x + i);   \
  tmp = _mm256_add_ps(tmp, bias); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = x[i] + a;
  }
#else
T
tensor-tang 已提交
363
  vec_add_bias<float, platform::isa_any>(n, a, x, y);
T
tensor-tang 已提交
364 365 366 367
#endif
}

template <>
T
tensor-tang 已提交
368 369 370
inline void vec_add_bias<float, platform::avx2>(const int n, const float a,
                                                const float* x, float* y) {
  vec_add_bias<float, platform::avx>(n, a, x, y);
T
tensor-tang 已提交
371 372 373
}

template <>
T
tensor-tang 已提交
374 375
inline void vec_add_bias<float, platform::avx512f>(const int n, const float a,
                                                   const float* x, float* y) {
T
tensor-tang 已提交
376
  // TODO(TJ): enable me
T
tensor-tang 已提交
377
  vec_add_bias<float, platform::avx2>(n, a, x, y);
T
tensor-tang 已提交
378 379
}

T
tensor-tang 已提交
380
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
381 382 383 384 385
inline void vec_identity(const int n, const T* x, T* y) {
  // do nothing
  return;
}

T
tensor-tang 已提交
386
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
387 388 389 390
inline void vec_sigmoid(const int n, const T* x, T* y) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
391 392 393 394 395 396
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  vec_exp<T>(n, y, y);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
T
tensor-tang 已提交
397 398 399
  }
}

400
template <>
T
tensor-tang 已提交
401 402
inline void vec_sigmoid<float, platform::avx>(const int n, const float* x,
                                              float* y) {
403
#ifdef __AVX__
404
  constexpr int block = YMM_FLOAT_BLOCK;
405
  if (n < block) {
T
tensor-tang 已提交
406
    vec_sigmoid<float, platform::isa_any>(n, x, y);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, min);   \
  tmp = _mm256_min_ps(tmp, max);   \
  tmp = _mm256_sub_ps(zeros, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
425
#undef MOVE_ONE_STEP
426
  if (rest != 0) {
427 428 429 430 431 432
    // can not continue move step since the src and dst address could be equal
    const float xmin = SIGMOID_THRESHOLD_MIN;
    const float xmax = SIGMOID_THRESHOLD_MAX;
    for (i = n - rest; i < n; ++i) {
      y[i] = 0.f - ((x[i] < xmin) ? xmin : ((x[i] > xmax) ? xmax : x[i]));
    }
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  }

  vec_exp<float>(n, y, y);

  __m256 ones = _mm256_set1_ps(1.0f);
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(y + i);   \
  tmp = _mm256_add_ps(ones, tmp); \
  tmp = _mm256_div_ps(ones, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step
  for (i = n - rest; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
#else
T
tensor-tang 已提交
455
  vec_sigmoid<float, platform::isa_any>(n, x, y);
456 457 458 459
#endif
}

template <>
T
tensor-tang 已提交
460 461 462
inline void vec_sigmoid<float, platform::avx2>(const int n, const float* x,
                                               float* y) {
  vec_sigmoid<float, platform::avx>(n, x, y);
463 464 465
}

template <>
T
tensor-tang 已提交
466 467
inline void vec_sigmoid<float, platform::avx512f>(const int n, const float* x,
                                                  float* y) {
468
  // TODO(TJ): enable me
T
tensor-tang 已提交
469
  vec_sigmoid<float, platform::avx2>(n, x, y);
470 471
}

T
tensor-tang 已提交
472
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
473
inline void vec_tanh(const int n, const T* x, T* y) {
474 475 476
  vec_scal<T, isa>(n, static_cast<T>(2), x, y);
  vec_sigmoid<T, isa>(n, y, y);
  vec_scal<T>(n, static_cast<T>(2), y);
T
tensor-tang 已提交
477
  vec_add_bias<T, isa>(n, static_cast<T>(-1), y, y);
T
tensor-tang 已提交
478 479
}

T
tensor-tang 已提交
480
// TODO(TJ): make relu clip
T
tensor-tang 已提交
481
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
T
tensor-tang 已提交
482 483 484 485 486 487
inline void vec_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

T
tensor-tang 已提交
488
template <>
T
tensor-tang 已提交
489 490
inline void vec_relu<float, platform::avx>(const int n, const float* x,
                                           float* y) {
T
tensor-tang 已提交
491
#ifdef __AVX__
492
  constexpr int block = YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
493
  if (n < block * 4) {
T
tensor-tang 已提交
494
    vec_relu<float, platform::isa_any>(n, x, y);
T
tensor-tang 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    return;
  }

  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, zeros); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
  if (rest == 0) {
    return;
  }
  i = n - block;
  MOVE_ONE_STEP;
#undef MOVE_ONE_STEP

#else
T
tensor-tang 已提交
518
  vec_relu<float, platform::isa_any>(n, x, y);
T
tensor-tang 已提交
519 520 521
#endif
}

T
tensor-tang 已提交
522
template <>
T
tensor-tang 已提交
523 524 525
inline void vec_relu<float, platform::avx2>(const int n, const float* x,
                                            float* y) {
  vec_relu<float, platform::avx>(n, x, y);
T
tensor-tang 已提交
526 527 528
}

template <>
T
tensor-tang 已提交
529 530
inline void vec_relu<float, platform::avx512f>(const int n, const float* x,
                                               float* y) {
531
  // TODO(TJ): enable me
T
tensor-tang 已提交
532
  vec_relu<float, platform::avx2>(n, x, y);
T
tensor-tang 已提交
533 534
}

T
tensor-tang 已提交
535 536
// TODO(TJ): optimize double of sigmoid, tanh and relu if necessary

T
tensor-tang 已提交
537
template <typename T, platform::cpu_isa_t isa = platform::isa_any>
538 539 540 541 542 543 544 545 546 547 548 549 550
class VecActivations {
 public:
  std::function<void(const int, const T*, T*)> operator()(
      const std::string& type) {
    if (type == "sigmoid") {
      return vec_sigmoid<T, isa>;
    } else if (type == "relu") {
      return vec_relu<T, isa>;
    } else if (type == "tanh") {
      return vec_tanh<T, isa>;
    } else if (type == "identity" || type == "") {
      return vec_identity<T, isa>;
    }
T
tensor-tang 已提交
551
    PADDLE_THROW("Not support type: %s", type);
552 553 554
  }
};

T
tensor-tang 已提交
555 556 557
}  // namespace math
}  // namespace operators
}  // namespace paddle