recurrent_op.cc 8.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
16 17 18 19 20

#include <cstring>
#include <sstream>

#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27 28
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
29
using LoDTensor = framework::LoDTensor;
D
dongzhihong 已提交
30

Y
Yu Yang 已提交
31
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
32 33
  seq_len_ =
      scope.FindVar(arg_->inlinks[0])->GetMutable<LoDTensor>()->dims()[0];
Y
Yan Chunwei 已提交
34
  CreateScopes(scope);
35
  auto step_scopes = GetStepScopes(scope);
36 37
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
38
  InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
39

Y
Yan Chunwei 已提交
40 41
  for (size_t i = 0; i < seq_len_; i++) {
    if (i > 0) {
42 43
      rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
44
    }
Y
Yan Chunwei 已提交
45
    (*stepnet_)->InferShape(*step_scopes[i]);
Y
Yan Chunwei 已提交
46
  }
47 48
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
49 50
}

Y
Yu Yang 已提交
51
void RecurrentAlgorithm::Run(const Scope& scope,
Y
Yan Chunwei 已提交
52 53
                             const platform::DeviceContext& dev_ctx) const {
  auto step_scopes = GetStepScopes(scope);
54 55
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
D
dangqingqing 已提交
56
  InitMemories(step_scopes[0], false /*infer_shape_mode*/);
D
dangqingqing 已提交
57

Y
Yan Chunwei 已提交
58
  for (size_t step_id = 0; step_id < seq_len_; step_id++) {
Y
Yan Chunwei 已提交
59
    // create output alias variables
Y
Yan Chunwei 已提交
60
    if (step_id > 0) {
61 62
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
63
    }
Y
Yan Chunwei 已提交
64
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
65
  }
66 67
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
68 69
}

Y
Yu Yang 已提交
70
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
Y
Yan Chunwei 已提交
71
  // TODO(superjom) Only two scopes are needed for inference, this case will be
Y
Yan Chunwei 已提交
72
  // supported later.
Y
Yan Chunwei 已提交
73 74 75 76 77
  auto step_scopes_var = scope.FindVar(arg_->step_scopes);
  PADDLE_ENFORCE(step_scopes_var != nullptr, "");
  auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();

  // Now all variables in scope must be created outside of op.
Y
Yan Chunwei 已提交
78 79 80
  PADDLE_ENFORCE_NOT_NULL(stepnet_);
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
Y
Yan Chunwei 已提交
81 82 83

  if (seq_len_ > step_scopes->size()) {
    for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Y
Yu Yang 已提交
84
      auto& step_scope = scope.NewScope();
Y
Yan Chunwei 已提交
85

Y
Yan Chunwei 已提交
86
      // create step net's temp inputs
Y
Yan Chunwei 已提交
87
      for (auto& input : (*stepnet_)->Inputs()) {
88
        // the weight are located in parent scope
Y
Yu Yang 已提交
89 90
        for (auto& var_name : input.second) {
          if (!step_scope.FindVar(var_name)) {
91
            step_scope.NewVar(var_name)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
92 93
          }
        }
Y
Yan Chunwei 已提交
94
      }
Y
Yan Chunwei 已提交
95
      // create stepnet's outputs
Y
Yan Chunwei 已提交
96
      for (const auto& output : (*stepnet_)->Outputs()) {
Y
Yu Yang 已提交
97 98 99
        for (auto& var_name : output.second) {
          step_scope.NewVar(var_name);
        }
Y
Yan Chunwei 已提交
100
      }
Y
Yu Yang 已提交
101
      step_scopes->emplace_back(&step_scope);
Y
Yan Chunwei 已提交
102 103 104 105
    }
  }
}

D
dangqingqing 已提交
106
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
D
dangqingqing 已提交
107
                                      bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
108
  for (auto& attr : arg_->memories) {
109
    auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
110
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
111
                   "memory [%s]'s boot variable [%s] not exists", attr.var,
Y
Yan Chunwei 已提交
112
                   attr.boot_var);
113 114
    auto* boot_mem =
        step_scope->FindVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
115
    if (infer_shape_mode) {
116
      pre_mem->Resize(boot_mem->dims());
Y
Yan Chunwei 已提交
117
      PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
118 119 120
    } else {
      pre_mem->ShareDataWith<float>(*boot_mem);
    }
Y
Yan Chunwei 已提交
121 122 123
  }
}

124
const rnn::ArgumentName RecurrentOp::kArgName{
S
superjom 已提交
125
    "step_net", "step_scopes",  "inlinks",      "outlinks",
126 127 128
    "memories", "pre_memories", "boot_memories"};

const rnn::ArgumentName RecurrentGradientOp::kArgName{
S
superjom 已提交
129 130
    "step_net", "step_scopes",  "outlink@grad",      "inlink@grad",
    "memories", "pre_memories", "boot_memories@grad"};
Y
Yan Chunwei 已提交
131

Y
Yu Yang 已提交
132
RecurrentOp::RecurrentOp(const std::string& type,
Y
Yu Yang 已提交
133 134
                         const framework::VariableNameMap& inputs,
                         const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
135 136
                         const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
137 138
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
139 140
}

D
dongzhihong 已提交
141 142
class RecurrentAlgorithmProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
143
 public:
D
dongzhihong 已提交
144 145
  RecurrentAlgorithmProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
Y
Yan Chunwei 已提交
146 147 148
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = RecurrentOp::kArgName;
    // inputs and outputs stored in proto
D
dangqingqing 已提交
149 150
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
Y
Yu Yang 已提交
151
        .AsDuplicable();
Y
Yu Yang 已提交
152
    AddInput(name.boot_memories, "variables to initialize memories.")
Y
Yu Yang 已提交
153
        .AsDuplicable();
Y
Yan Chunwei 已提交
154

D
dangqingqing 已提交
155
    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
Y
Yu Yang 已提交
156
        .AsDuplicable();
Y
Yan Chunwei 已提交
157 158 159 160 161 162 163 164 165 166 167 168
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a recurrent group operator.");
  }
};

void RecurrentGradientAlgorithm::Run(
Y
Yu Yang 已提交
169
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {
Y
Yan Chunwei 已提交
170
  auto step_scopes = GetStepScopes(scope);
171 172
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
173 174
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
175 176
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
177
    }
Y
Yan Chunwei 已提交
178
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
179
  }
180
  LinkBootMemoryGradients(step_scopes[0], false);
181 182
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
183 184 185
}

void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
D
dangqingqing 已提交
186
    Scope* step_scope, bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
187
  for (auto& attr : arg_->memories) {
D
dangqingqing 已提交
188
    PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
189
                   "memory variable [%s] does not exists", attr.var);
Y
Yu Yang 已提交
190
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
191
                   "boot variable [%s] does not exists", attr.boot_var);
192 193 194
    auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable<LoDTensor>();
    auto* boot_mem_grad =
        step_scope->NewVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
195
    if (infer_shape_mode) {
196 197 198 199
      boot_mem_grad->Resize(mem_grad->dims());
    } else {
      boot_mem_grad->ShareDataWith<float>(*mem_grad);
    }
Y
Yan Chunwei 已提交
200 201 202
  }
}

Y
Yu Yang 已提交
203
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
204 205
  seq_len_ =
      scope.FindVar(arg_->inlinks[0])->GetMutable<LoDTensor>()->dims()[0];
Y
Yan Chunwei 已提交
206
  auto step_scopes = GetStepScopes(scope);
207 208
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
209 210
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
211 212
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
213
    }
Y
Yan Chunwei 已提交
214
    (*stepnet_)->InferShape(*step_scopes[step_id]);
Y
Yan Chunwei 已提交
215
  }
216 217
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
218
  LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
219 220
}

Y
Yu Yang 已提交
221
RecurrentGradientOp::RecurrentGradientOp(
Y
Yu Yang 已提交
222 223
    const std::string& type, const framework::VariableNameMap& inputs,
    const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
224 225
    const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
226 227
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
228 229 230 231 232
}

}  // namespace operators
}  // namespace paddle

F
fengjiayi 已提交
233
REGISTER_OP_WITHOUT_GRADIENT(
234
    recurrent, paddle::operators::RecurrentOp,
F
fengjiayi 已提交
235
    paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);