recurrent_op.cc 8.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
16 17 18 19 20

#include <cstring>
#include <sstream>

#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27 28 29
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;

Y
Yu Yang 已提交
30
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
S
superjom 已提交
31
  seq_len_ = scope.FindVar(arg_->inlinks[0])->GetMutable<Tensor>()->dims()[0];
Y
Yan Chunwei 已提交
32
  CreateScopes(scope);
33
  auto step_scopes = GetStepScopes(scope);
34 35
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
36
  InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
37

Y
Yan Chunwei 已提交
38 39
  for (size_t i = 0; i < seq_len_; i++) {
    if (i > 0) {
40 41
      rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
42
    }
Y
Yan Chunwei 已提交
43
    (*stepnet_)->InferShape(*step_scopes[i]);
Y
Yan Chunwei 已提交
44
  }
45 46
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
47 48
}

Y
Yu Yang 已提交
49
void RecurrentAlgorithm::Run(const Scope& scope,
Y
Yan Chunwei 已提交
50 51
                             const platform::DeviceContext& dev_ctx) const {
  auto step_scopes = GetStepScopes(scope);
52 53
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
D
dangqingqing 已提交
54
  InitMemories(step_scopes[0], false /*infer_shape_mode*/);
D
dangqingqing 已提交
55

Y
Yan Chunwei 已提交
56
  for (size_t step_id = 0; step_id < seq_len_; step_id++) {
Y
Yan Chunwei 已提交
57
    // create output alias variables
Y
Yan Chunwei 已提交
58
    if (step_id > 0) {
59 60
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
61
    }
Y
Yan Chunwei 已提交
62
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
63
  }
64 65
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
66 67
}

Y
Yu Yang 已提交
68
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
Y
Yan Chunwei 已提交
69
  // TODO(superjom) Only two scopes are needed for inference, this case will be
Y
Yan Chunwei 已提交
70
  // supported later.
Y
Yan Chunwei 已提交
71 72 73 74 75
  auto step_scopes_var = scope.FindVar(arg_->step_scopes);
  PADDLE_ENFORCE(step_scopes_var != nullptr, "");
  auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();

  // Now all variables in scope must be created outside of op.
Y
Yan Chunwei 已提交
76 77 78
  PADDLE_ENFORCE_NOT_NULL(stepnet_);
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
Y
Yan Chunwei 已提交
79 80 81

  if (seq_len_ > step_scopes->size()) {
    for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Y
Yu Yang 已提交
82
      auto& step_scope = scope.NewScope();
Y
Yan Chunwei 已提交
83

Y
Yan Chunwei 已提交
84
      // create step net's temp inputs
Y
Yan Chunwei 已提交
85
      for (auto& input : (*stepnet_)->Inputs()) {
86
        // the weight are located in parent scope
Y
Yu Yang 已提交
87 88 89 90 91
        for (auto& var_name : input.second) {
          if (!step_scope.FindVar(var_name)) {
            step_scope.NewVar(var_name)->GetMutable<Tensor>();
          }
        }
Y
Yan Chunwei 已提交
92
      }
Y
Yan Chunwei 已提交
93
      // create stepnet's outputs
Y
Yan Chunwei 已提交
94
      for (const auto& output : (*stepnet_)->Outputs()) {
Y
Yu Yang 已提交
95 96 97
        for (auto& var_name : output.second) {
          step_scope.NewVar(var_name);
        }
Y
Yan Chunwei 已提交
98
      }
Y
Yu Yang 已提交
99
      step_scopes->emplace_back(&step_scope);
Y
Yan Chunwei 已提交
100 101 102 103
    }
  }
}

D
dangqingqing 已提交
104
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
D
dangqingqing 已提交
105
                                      bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
106
  for (auto& attr : arg_->memories) {
107
    Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
Y
Yu Yang 已提交
108
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
109
                   "memory [%s]'s boot variable [%s] not exists", attr.var,
Y
Yan Chunwei 已提交
110
                   attr.boot_var);
111
    Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>();
D
dangqingqing 已提交
112
    if (infer_shape_mode) {
113
      pre_mem->Resize(boot_mem->dims());
Y
Yan Chunwei 已提交
114
      PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
115 116 117
    } else {
      pre_mem->ShareDataWith<float>(*boot_mem);
    }
Y
Yan Chunwei 已提交
118 119 120
  }
}

121
const rnn::ArgumentName RecurrentOp::kArgName{
S
superjom 已提交
122
    "step_net", "step_scopes",  "inlinks",      "outlinks",
123 124 125
    "memories", "pre_memories", "boot_memories"};

const rnn::ArgumentName RecurrentGradientOp::kArgName{
S
superjom 已提交
126 127
    "step_net", "step_scopes",  "outlink@grad",      "inlink@grad",
    "memories", "pre_memories", "boot_memories@grad"};
Y
Yan Chunwei 已提交
128

Y
Yu Yang 已提交
129
RecurrentOp::RecurrentOp(const std::string& type,
Y
Yu Yang 已提交
130 131
                         const framework::VariableNameMap& inputs,
                         const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
132 133
                         const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
134 135
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
136 137
}

D
dongzhihong 已提交
138 139
class RecurrentAlgorithmProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
140
 public:
D
dongzhihong 已提交
141 142
  RecurrentAlgorithmProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
Y
Yan Chunwei 已提交
143 144 145
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = RecurrentOp::kArgName;
    // inputs and outputs stored in proto
D
dangqingqing 已提交
146 147
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
Y
Yu Yang 已提交
148
        .AsDuplicable();
Y
Yu Yang 已提交
149
    AddInput(name.boot_memories, "variables to initialize memories.")
Y
Yu Yang 已提交
150
        .AsDuplicable();
Y
Yan Chunwei 已提交
151

D
dangqingqing 已提交
152
    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
Y
Yu Yang 已提交
153
        .AsDuplicable();
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163 164 165
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a recurrent group operator.");
  }
};

void RecurrentGradientAlgorithm::Run(
Y
Yu Yang 已提交
166
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {
Y
Yan Chunwei 已提交
167
  auto step_scopes = GetStepScopes(scope);
168 169
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
170 171
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
172 173
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
174
    }
Y
Yan Chunwei 已提交
175
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
176
  }
177
  LinkBootMemoryGradients(step_scopes[0], false);
178 179
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
180 181 182
}

void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
D
dangqingqing 已提交
183
    Scope* step_scope, bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
184
  for (auto& attr : arg_->memories) {
D
dangqingqing 已提交
185
    PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
186
                   "memory variable [%s] does not exists", attr.var);
Y
Yu Yang 已提交
187
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
188
                   "boot variable [%s] does not exists", attr.boot_var);
D
dangqingqing 已提交
189
    Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
190
    Tensor* boot_mem_grad =
191
        step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>();
D
dangqingqing 已提交
192
    if (infer_shape_mode) {
193 194 195 196
      boot_mem_grad->Resize(mem_grad->dims());
    } else {
      boot_mem_grad->ShareDataWith<float>(*mem_grad);
    }
Y
Yan Chunwei 已提交
197 198 199
  }
}

Y
Yu Yang 已提交
200
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
S
superjom 已提交
201
  seq_len_ = scope.FindVar(arg_->inlinks[0])->GetMutable<Tensor>()->dims()[0];
Y
Yan Chunwei 已提交
202
  auto step_scopes = GetStepScopes(scope);
203 204
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
205 206
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
207 208
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
209
    }
Y
Yan Chunwei 已提交
210
    (*stepnet_)->InferShape(*step_scopes[step_id]);
Y
Yan Chunwei 已提交
211
  }
212 213
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
214
  LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
215 216
}

Y
Yu Yang 已提交
217
RecurrentGradientOp::RecurrentGradientOp(
Y
Yu Yang 已提交
218 219
    const std::string& type, const framework::VariableNameMap& inputs,
    const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
220 221
    const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
222 223
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
224 225 226 227 228
}

}  // namespace operators
}  // namespace paddle

F
fengjiayi 已提交
229
REGISTER_OP_WITHOUT_GRADIENT(
230
    recurrent, paddle::operators::RecurrentOp,
F
fengjiayi 已提交
231
    paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);