test_huber_loss_op.py 3.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
yangyaming 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle.fluid as fluid
21
import paddle
22
from paddle.fluid import compiler, Program, program_guard
Y
yangyaming 已提交
23 24 25 26 27 28 29 30 31 32


def huber_loss_forward(val, delta):
    abs_val = abs(val)
    if abs_val <= delta:
        return 0.5 * val * val
    else:
        return delta * (abs_val - 0.5 * delta)


33
class TestHuberLossOp(OpTest):
Y
yangyaming 已提交
34
    def setUp(self):
35
        self.op_type = 'huber_loss'
36 37
        self.python_api = paddle.fluid.layers.huber_loss
        self.python_out_sig = ["Out"]
38 39
        self.delta = 1.0
        self.init_input()
40 41
        shape = self.set_shape()
        residual = self.inputs['Y'] - self.inputs['X']
42
        loss = np.vectorize(huber_loss_forward)(residual,
43 44
                                                self.delta).astype('float32')
        self.attrs = {'delta': self.delta}
45
        self.outputs = {'Residual': residual, 'Out': loss.reshape(shape)}
46 47

    def init_input(self):
48
        shape = self.set_shape()
49
        self.inputs = {
50 51
            'X': np.random.uniform(0, 1., shape).astype('float32'),
            'Y': np.random.uniform(0, 1., shape).astype('float32'),
Y
yangyaming 已提交
52 53
        }

54
    def set_shape(self):
55
        return (100, 1)
56

57
    def test_check_output(self):
58
        self.check_output(check_eager=True)
Y
yangyaming 已提交
59

60
    def test_check_grad_normal(self):
61
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
62 63 64

    def test_check_grad_ingore_x(self):
        self.check_grad(
65
            ['Y'], 'Out', max_relative_error=0.008, no_grad_set=set("residual"))
66 67 68

    def test_check_grad_ingore_y(self):
        self.check_grad(
69
            ['X'], 'Out', max_relative_error=0.008, no_grad_set=set('residual'))
Y
yangyaming 已提交
70 71


72
def TestHuberLossOp1(TestHuberLossOp):
73 74 75 76 77 78 79 80 81
    def set_shape(self):
        return (64)


def TestHuberLossOp2(TestHuberLossOp):
    def set_shape(self):
        return (6, 6)


Z
zhangchunle 已提交
82
def TestHuberLossOp3(TestHuberLossOp):
83 84
    def set_shape(self):
        return (6, 6, 1)
85 86


87 88 89 90 91 92 93 94
class TestHuberLossOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input and label must be Variable
            xw = np.random.random((6, 6)).astype("float32")
            xr = fluid.data(name='xr', shape=[None, 6], dtype="float32")
            lw = np.random.random((6, 6)).astype("float32")
            lr = fluid.data(name='lr', shape=[None, 6], dtype="float32")
95 96 97
            delta = 1.0
            self.assertRaises(TypeError, fluid.layers.huber_loss, xr, lw, delta)
            self.assertRaises(TypeError, fluid.layers.huber_loss, xw, lr, delta)
98 99 100 101

            # the dtype of input and label must be float32 or float64
            xw2 = fluid.data(name='xw2', shape=[None, 6], dtype="int32")
            lw2 = fluid.data(name='lw2', shape=[None, 6], dtype="int32")
102 103 104 105
            self.assertRaises(TypeError, fluid.layers.huber_loss, xw2, lr,
                              delta)
            self.assertRaises(TypeError, fluid.layers.huber_loss, xr, lw2,
                              delta)
106 107


108
if __name__ == '__main__':
109
    paddle.enable_static()
110
    unittest.main()