test_huber_loss_op.py 3.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
yangyaming 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
yangyaming 已提交
22 23 24 25 26 27 28 29 30 31


def huber_loss_forward(val, delta):
    abs_val = abs(val)
    if abs_val <= delta:
        return 0.5 * val * val
    else:
        return delta * (abs_val - 0.5 * delta)


32
class TestHuberLossOp(OpTest):
Y
yangyaming 已提交
33
    def setUp(self):
34
        self.op_type = 'huber_loss'
35 36
        self.delta = 1.0
        self.init_input()
37 38
        shape = self.set_shape()
        residual = self.inputs['Y'] - self.inputs['X']
39
        loss = np.vectorize(huber_loss_forward)(residual,
40 41
                                                self.delta).astype('float32')
        self.attrs = {'delta': self.delta}
42
        self.outputs = {'Residual': residual, 'Out': loss.reshape(shape)}
43 44

    def init_input(self):
45
        shape = self.set_shape()
46
        self.inputs = {
47 48
            'X': np.random.uniform(0, 1., shape).astype('float32'),
            'Y': np.random.uniform(0, 1., shape).astype('float32'),
Y
yangyaming 已提交
49 50
        }

51
    def set_shape(self):
52
        return (100, 1)
53

54 55
    def test_check_output(self):
        self.check_output()
Y
yangyaming 已提交
56

57
    def test_check_grad_normal(self):
58
        self.check_grad(['X', 'Y'], 'Out')
59 60 61

    def test_check_grad_ingore_x(self):
        self.check_grad(
62
            ['Y'], 'Out', max_relative_error=0.008, no_grad_set=set("residual"))
63 64 65

    def test_check_grad_ingore_y(self):
        self.check_grad(
66
            ['X'], 'Out', max_relative_error=0.008, no_grad_set=set('residual'))
Y
yangyaming 已提交
67 68


69
def TestHuberLossOp1(TestHuberLossOp):
70 71 72 73 74 75 76 77 78 79 80 81
    def set_shape(self):
        return (64)


def TestHuberLossOp2(TestHuberLossOp):
    def set_shape(self):
        return (6, 6)


def TestHuberLossOp2(TestHuberLossOp):
    def set_shape(self):
        return (6, 6, 1)
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
class TestHuberLossOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input and label must be Variable
            xw = np.random.random((6, 6)).astype("float32")
            xr = fluid.data(name='xr', shape=[None, 6], dtype="float32")
            lw = np.random.random((6, 6)).astype("float32")
            lr = fluid.data(name='lr', shape=[None, 6], dtype="float32")
            self.assertRaises(TypeError, fluid.layers.huber_loss, xw, lr)
            self.assertRaises(TypeError, fluid.layers.huber_loss, xr, lw)

            # the dtype of input and label must be float32 or float64
            xw2 = fluid.data(name='xw2', shape=[None, 6], dtype="int32")
            lw2 = fluid.data(name='lw2', shape=[None, 6], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.huber_loss, xw2, lr)
            self.assertRaises(TypeError, fluid.layers.huber_loss, xr, lw2)


102 103
if __name__ == '__main__':
    unittest.main()