test_huber_loss_op.py 2.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
yangyaming 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
Y
yangyaming 已提交
20 21 22 23 24 25 26 27 28 29


def huber_loss_forward(val, delta):
    abs_val = abs(val)
    if abs_val <= delta:
        return 0.5 * val * val
    else:
        return delta * (abs_val - 0.5 * delta)


30
class TestHuberLossOp(OpTest):
Y
yangyaming 已提交
31
    def setUp(self):
32
        self.op_type = 'huber_loss'
33 34 35 36 37
        self.samples_num = 64
        self.delta = 1.0
        self.init_input()
        residual = self.inputs['Y'].reshape(
            self.samples_num, 1) - self.inputs['X'].reshape(self.samples_num, 1)
38
        loss = np.vectorize(huber_loss_forward)(residual,
39 40
                                                self.delta).astype('float32')
        self.attrs = {'delta': self.delta}
Y
yangyaming 已提交
41
        self.outputs = {
42
            'Residual': residual,
43 44 45 46 47 48 49 50 51
            'Out': loss.reshape((self.samples_num, 1))
        }

    def init_input(self):
        self.inputs = {
            'X': np.random.uniform(0, 1.,
                                   (self.samples_num, 1)).astype('float32'),
            'Y': np.random.uniform(0, 1.,
                                   (self.samples_num, 1)).astype('float32'),
Y
yangyaming 已提交
52 53
        }

54 55
    def test_check_output(self):
        self.check_output()
Y
yangyaming 已提交
56

57
    def test_check_grad_normal(self):
58
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.008)
59 60 61

    def test_check_grad_ingore_x(self):
        self.check_grad(
62
            ['Y'], 'Out', max_relative_error=0.008, no_grad_set=set("residual"))
63 64 65

    def test_check_grad_ingore_y(self):
        self.check_grad(
66
            ['X'], 'Out', max_relative_error=0.008, no_grad_set=set('residual'))
Y
yangyaming 已提交
67 68


69 70 71 72 73 74 75 76 77
def TestHuberLossOp1(TestHuberLossOp):
    def init_input(self):
        self.inputs = {
            'X': np.random.uniform(0, 1.,
                                   (self.samples_num, 1)).astype('float32'),
            'Y': np.random.uniform(0, 1., (self.samples_num)).astype('float32'),
        }


78 79
if __name__ == '__main__':
    unittest.main()