lookup_table_v2_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lookup_table_v2_op.h"

#include <memory>
18

19
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

class LookupTableV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
31 32
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"),
                      true,
33 34
                      platform::errors::InvalidArgument(
                          "Input(W) of LookupTableV2Op should not be null."));
35 36
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"),
                      true,
37 38 39
                      platform::errors::InvalidArgument(
                          "Input(Ids) of LookupTableV2Op should not be null."));
    PADDLE_ENFORCE_EQ(
40 41
        ctx->HasOutput("Out"),
        true,
42 43
        platform::errors::InvalidArgument(
            "Output(Out) of LookupTableV2Op should not be null."));
44 45 46 47 48

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
    int ids_rank = ids_dims.size();
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
49
    PADDLE_ENFORCE_EQ(
50 51
        table_dims.size(),
        2,
52 53 54 55
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
56 57
            table_dims.size(),
            table_dims));
58

59
    auto output_dims = phi::vectorize(ids_dims);
60
    output_dims.push_back(table_dims[1]);
61
    ctx->SetOutputDim("Out", phi::make_ddim(output_dims));
62 63 64 65 66 67 68 69 70 71

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
72
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
73 74 75 76 77 78 79 80 81 82 83
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
84
             "An input with type int64 "
85
             "contains the ids to be looked up in W.");
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);
    AddComment(R"DOC(
Lookup Table V2 Operator.

This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

106 107
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableV2GradOpNoBufferVarsInferer,
                                    "W");
108

H
hong 已提交
109 110
template <typename T>
class LookupTableV2GradOpMaker : public framework::SingleGradOpMaker<T> {
111
 public:
H
hong 已提交
112
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
113 114

 protected:
115
  void Apply(GradOpPtr<T> op) const override {
116 117
    op->SetType("lookup_table_v2_grad");

H
hong 已提交
118 119 120
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
121

H
hong 已提交
122
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
123

H
hong 已提交
124
    op->SetAttrMap(this->Attrs());
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  }
};

class LookupTableV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
140 141
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
142 143 144 145 146 147 148
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
149
    auto out_var_name = framework::GradVarName("W");
150
    auto attr = ctx->GetAttr("is_sparse");
R
Ruibiao Chen 已提交
151
    bool is_sparse = PADDLE_GET(bool, attr);
152 153 154
    if (is_sparse) {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
155 156
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
157 158 159
    } else {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
160
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
161
    }
162
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
163 164 165 166 167 168 169
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
170 171
REGISTER_OPERATOR(lookup_table_v2,
                  ops::LookupTableV2Op,
H
hong 已提交
172 173 174
                  ops::LookupTableV2OpMaker,
                  ops::LookupTableV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableV2GradOpMaker<paddle::imperative::OpBase>);
175

176 177
REGISTER_OPERATOR(lookup_table_v2_grad,
                  ops::LookupTableV2OpGrad,
178
                  ops::LookupTableV2GradOpNoBufferVarsInferer,
179 180
                  ops::LookupTableV2OpGradVarTypeInference);

T
tangwei12 已提交
181 182 183 184 185 186 187 188 189 190
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(lookup_table_v2)
    .AddCheckpoint(
        R"ROC(fix lookup_table_v2, add input type `int32`)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged("lookup_table_v2 support input type "
                                       "`int64`; after support input type "
                                       "`int32/int64`"));

/* ========================================================================== */